函數(shù)的極大值為           .
-2

試題分析:求導(dǎo)得:.由此可知,函數(shù)在處取得極大值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=2ax--(2+a)lnx(a≥0)
(Ⅰ)當(dāng)時,求的極值;
(Ⅱ)當(dāng)a>0時,討論的單調(diào)性;
(Ⅲ)若對任意的a∈(2,3),x­1,x2∈[1,3],恒有成立,求實數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),為常數(shù))
(1)當(dāng)恒成立,求實數(shù)的取值范圍;
(2)若函數(shù)有對稱中心為A(1,0),求證:函數(shù)的切線在切點處穿過圖象的充要條件是恰為函數(shù)在點A處的切線.(直線穿過曲線是指:直線與曲線有交點,且在交點左右附近曲線在直線異側(cè))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的圖象在上連續(xù),定義:,.其中,表示函數(shù)上的最小值,表示函數(shù)上的最大值.若存在最小正整數(shù),使得對任意的成立,則稱函數(shù)上的“階收縮函數(shù)”.
(Ⅰ)若,試寫出,的表達(dá)式;
(Ⅱ)已知函數(shù),試判斷是否為上的“階收縮函數(shù)”.如果是,求出對應(yīng)的;如果不是,請說明理由;
(Ⅲ)已知,函數(shù)上的2階收縮函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時,求曲線處的切線方程;
(Ⅱ)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若在上存在一點,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(I)當(dāng)a=1時,求函數(shù)f(x)的最小值;
(II)當(dāng)a≤0時,討論函數(shù)f(x)的單調(diào)性;
(III)是否存在實數(shù)a,對任意的x1,x2(0,+∞),且x1≠x2,都有恒成立.若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),且.
(1)判斷的奇偶性并說明理由;
(2)判斷在區(qū)間上的單調(diào)性,并證明你的結(jié)論;
(3)若在區(qū)間上,不等式恒成立,試確定實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為常數(shù),函數(shù)有兩個極值點,則(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)y=f(x)在(-,)內(nèi)有定義,對于給定的正數(shù)k,定義函數(shù):
,取函數(shù),若對任意的x∈(-,),恒有fk(x)=f(x),則(   )
A.k的最大值為2B.k的最小值為2
C.k的最大值為1D.k的最小值為1

查看答案和解析>>

同步練習(xí)冊答案