用數(shù)學(xué)歸納法證明: 的第二步中,當(dāng)時(shí)等式左邊與時(shí)的等式左邊的差等于   .

試題分析:當(dāng)時(shí),等式的左邊為,當(dāng)時(shí),等式的左邊為,所以當(dāng)時(shí)等式左邊與時(shí)的等式左邊的差等于.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

用數(shù)學(xué)歸納法證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在數(shù)列中,已知,(,).
(1)當(dāng),時(shí),分別求的值,判斷是否為定值,并給出證明;
(2)求出所有的正整數(shù),使得為完全平方數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列{}滿足:a1=2,對(duì)一切正整數(shù)n,都有
(1)探討數(shù)列{}是否為等比數(shù)列,并說(shuō)明理由;
(2)設(shè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:,求證:
(Ⅰ).
(Ⅱ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

某個(gè)命題與自然數(shù)n有關(guān),若n=k(k∈N*)時(shí)命題成立,那么可推得當(dāng)n=k+1時(shí)該命題也成立,現(xiàn)已知n=5時(shí),該命題不成立,那么可以推得(  )
A.n=6時(shí)該命題不成立B.n=6時(shí)該命題成立
C.n=4時(shí)該命題不成立D.n=4時(shí)該命題成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

用數(shù)學(xué)歸納法證明,從,左邊需要增乘的代數(shù)式為()
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

某個(gè)命題與正整數(shù)有關(guān),如果當(dāng)nk(k∈N)時(shí),該命題成立,那么可
推得當(dāng)nk+1時(shí)命題也成立.現(xiàn)在已知當(dāng)n=5時(shí),該命題不成立,那么可推得(  ).
A.當(dāng)n=6時(shí)該命題不成立
B.當(dāng)n=6時(shí)該命題成立
C.當(dāng)n=4時(shí)該命題不成立
D.當(dāng)n=4時(shí)該命題成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

利用數(shù)學(xué)歸納法證明
 ”時(shí),從“”變到  “”時(shí),左邊應(yīng)增乘的因式是 
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案