【題目】已知函數, , .
(1)若,且存在單調遞減區(qū)間,求實數的取值范圍;
(2)設函數的圖象與函數的圖象交于點, ,過線段的中點作軸的垂線分別交, 于點, ,證明: 在點處的切線與在點處的切線不平行.
【答案】(1).(2)見解析.
【解析】試題分析:(1),則 ,所以有解,即有的解,所以,所以的取值范圍為;(2)設點、的坐標分別為, ,則點, 的橫坐標為, 在點處的切線斜率為, 在點處的切線斜率為,由反證法證明得在點處的切線與在點處的切線不平行.
試題解析:
(1)時, ,則 ,
因為函數存在單調遞減區(qū)間,所以有解,
又因為,則有的解,
所以,
所以的取值范圍為.
(2)設點、的坐標分別為, , ,
則點, 的橫坐標為, 在點處的切線斜率為,
在點處的切線斜率為,
假設在點處的切線與在點處的切線平行,則,即,
則,
所以,設,則, ,①
令, ,則,
因為時, ,所以在上單調遞增,故,
則,這與①矛盾,假設不成立,
故在點處的切線與在點處的切線不平行.
科目:高中數學 來源: 題型:
【題目】已知a=(sinx,cosx),b=(sinx,sinx),f(x)=2a·b.
(1)求f(x)的最小正周期和最大值;
(2)若g(x)=f(x),x∈,畫出函數y=g(x)的圖象,討論y=g(x)-m(m∈R)的零點個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓(a>b>0)的離心率,過點和的直線與原點的距離為.
(1)求橢圓的方程.
(2)已知定點,若直線與橢圓交于C、D兩點.問:是否存在k的值,使以CD為直徑的圓過E點?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某化工企業(yè)2018年年底投入100萬元,購入一套污水處理設備。該設備每年的運轉費用是0.5萬元,此外,每年都要花費一定的維護費,第一年的維護費為2萬元,由于設備老化,以后每年的維護費都比上一年增加2萬元。設該企業(yè)使用該設備年的年平均污水處理費用為(單位:萬元)
(1)用表示;
(2)當該企業(yè)的年平均污水處理費用最低時,企業(yè)需重新更換新的污水處理設備。則該企業(yè)幾年后需要重新更換新的污水處理設備。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l過點P(3,4)
(1)它在y軸上的截距是在x軸上截距的2倍,求直線l的方程.
(2)若直線l與軸,軸的正半軸分別交于點,求的面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線:,點.
(1)求點關于直線的對稱點的坐標;
(2)直線關于點對稱的直線的方程;
(3)以為圓心,3為半徑長作圓,直線過點,且被圓截得的弦長為,求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某研究機構對高三學生的記憶力x和判斷力y進行統(tǒng)計分析,得下表數據:
x | 6 | 8 | 10 | 12 |
y | 2 | 3 | 5 | 6 |
(1)請在圖中畫出上表數據的散點圖;
(2)請根據上表提供的數據,用最小二乘法求出y關于x的線性回歸方程;
(3)試根據(2)求出的線性回歸方程,預測記憶力為9的同學的判斷力.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com