設(shè)函數(shù)f(x)=logax(a>0,a≠1)滿足f(9)=2,則f-1(log92)等于( 。
A、
2
B、2
C、-2
D、-
2
分析:先由f(9)=2解出a值,得到函數(shù)f(x)的解析式,求出其反函數(shù)的解析式,進而求反函數(shù)的值.
解答:解:∵函數(shù)f(x)=logax(a>0,a≠1)滿足f(9)=2,
∴l(xiāng)oga9=2,
∴a2=9,
∴a=3,
則f(x)=log3x,f-1(x)=3x
∴f-1(log92)=3
log
2
9
=3
log
2
3
=
2
,
故答案選 A.
點評:本題考查反函數(shù)的求法及對數(shù)的運算、對數(shù)恒等式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:陜西省漢中地區(qū)2007-2008學(xué)年度高三數(shù)學(xué)第一學(xué)期期中考試試卷(理科) 題型:022

若函數(shù)f(x)=的定義域為M,g(x)=lo(2+x=6x2)的單調(diào)遞減區(qū)間是開區(qū)間N,設(shè)全集U=R,則M∩CU(N)=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:蘇教版江蘇省揚州市2007-2008學(xué)年度五校聯(lián)考高三數(shù)學(xué)試題 題型:044

已知函數(shù)(m∈R)

(1)若y=lo[8-f(x)]在[1,+∞)上是單調(diào)減函數(shù),求實數(shù)m的取值范圍;

(2)設(shè)g(x)=f(x)+lnx,當(dāng)m≥-2時,求g(x)在上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東省莒南一中2008-2009學(xué)年度高三第一學(xué)期學(xué)業(yè)水平階段性測評數(shù)學(xué)文 題型:044

設(shè)f(x)=lo的奇函數(shù),a為常數(shù),

(Ⅰ)求a的值;

(Ⅱ)證明:f(x)在(1,+∞)內(nèi)單調(diào)遞增;

(Ⅲ)若對于[3,4]上的每一個x的值,不等式f(x)>()x+m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案