20.下列四個函數(shù)中,在(0,+∞)上增函數(shù)的是( 。
A.f(x)=($\frac{1}{2}$)x-1B.f(x)=log2x-4C.f(x)=3-2xD.f(x)=sinx

分析 根據(jù)常見函數(shù)的性質(zhì)判斷函數(shù)的單調(diào)性即可.

解答 解:對于A,函數(shù)在(0,+∞)遞減,不合題意;
對于B,函數(shù)在(0,+∞)遞增,符合題意;
對于C,函數(shù)在(0,+∞)遞減,不合題意;
定義D,函數(shù)在(0,$\frac{π}{2}$)遞增,在($\frac{π}{2}$,π)遞減,不合題意,
故選:B.

點評 本題考查了函數(shù)的單調(diào)性問題,考查常見函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

10.已知等差數(shù)列{an}的前n項和為Sn,若$\frac{{a}_{5}}{{a}_{3}}$=$\frac{5}{9}$,則$\frac{{S}_{9}}{{S}_{5}}$=( 。
A.$\frac{9}{5}$B.1C.$\frac{3}{5}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.為了在運行如圖的程序之后輸出的值為5,則輸入x的所有可能的值是( 。
A.5B.-5C.5或0D.-5或5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.某四棱錐的三視圖如圖所示,則俯視圖的面積為( 。
A.2B.$\frac{5}{2}$C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一個頂點與拋物線y2=4x的焦點重合,且雙曲線的離心率等于$\sqrt{5}$,則該雙曲線的方程為x2-$\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.冪函數(shù)f(x)=(m2-2m+1)x2m-1在(0,+∞)上為增函數(shù),則實數(shù)m的值為( 。
A.0B.1C.2D.1或2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.設集合A={x|a-1<x<a+1},B={x|x<-1或x>2}.
(1)若A∩B=∅,求實數(shù)a的取值范圍;
(2)若A∪B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知tan($\frac{π}{4}$+α)=$\frac{1}{2}$,則tanα的值為( 。
A.-$\frac{1}{3}$B.$\frac{1}{3}$C.-$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,E為PD中點,若$\overrightarrow{PA}$=$\overrightarrow a$,$\overrightarrow{PB}$=$\overrightarrow b$,$\overrightarrow{PC}$=$\overrightarrow c$,則$\overrightarrow{BE}$=( 。
A.$\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b+\frac{1}{2}$$\overrightarrow c$B.$\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b-\frac{1}{2}$$\overrightarrow c$C.$\frac{1}{2}\overrightarrow a-\frac{3}{2}\overrightarrow b+\frac{1}{2}$$\overrightarrow c$D.$\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b+\frac{3}{2}\overrightarrow c$

查看答案和解析>>

同步練習冊答案