證明:(I)設(shè)F(x)=
x
2+lnx-
x
3,則
,
∵x>1,∴F′(x)<0,∴F(x)在[1,+∞)上是減函數(shù).
又F(1)=-
<0,故在[1,+∞)上,F(xiàn)(x)<0,即
x
2+lnx<
x
3,
∴在區(qū)間[1,+∞)上,函數(shù)f(x)的圖象在函數(shù)g(x)=
x
3圖象的下方;---------(6分)
(II)∵x>0,∴[f′(x)]
n-f′(x
n)=
.
當(dāng)n=1時(shí),不等式顯然成立;
當(dāng)n≥2時(shí),有[f′(x)]
n-f′(x
n)=
+
+…+
=
[
+
+…+
]
≥
(
+
+…+
)=2
n-2
∴[f′(x)]
n-f′(x
n)≥2
n-2(n∈N
*).--------------------(12分)
分析:(I)構(gòu)造F(x)=
x
2+lnx-
x
3,利用導(dǎo)數(shù)確定在[1,+∞)上,F(xiàn)(x)<0,即可得到結(jié)論;
(II)x>0時(shí),[f′(x)]
n-f′(x
n)=
,利用二項(xiàng)式定理,結(jié)合基本不等式,即可證得結(jié)論.
點(diǎn)評:本題考查導(dǎo)數(shù)知識的運(yùn)用,考查函數(shù)的單調(diào)性,考查二項(xiàng)式定理的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.