(本題滿分12分) 如圖,有一塊矩形空地,要在這塊空地上辟一個(gè)內(nèi)接四邊形為綠地,使其四個(gè)頂點(diǎn)分別落在矩形的四條邊上,已知AB=>2),BC=2,且AE=AH=CF=CG,設(shè)AE=,綠地面積為.

(1)寫出關(guān)于的函數(shù)關(guān)系式,并指出這個(gè)函數(shù)的定義域;

(2)當(dāng)AE為何值時(shí),綠地面積最大?   (10分) 

 

【答案】

(1)y=-2x2+(+2)x,(0<x≤2) ;

(2)當(dāng)<6時(shí),AE=時(shí),綠地面積取最大值

當(dāng)≥6時(shí),AE=2時(shí),綠地面積取最大值2-4。

【解析】

試題分析:(1)先求得四邊形ABCD,△AHE的面積,再分割法求得四邊形EFGH的面積,即建立y關(guān)于x的函數(shù)關(guān)系式;

(2)由(1)知y是關(guān)于x的二次函數(shù),用二次函數(shù)求最值的方法求解.

解:(1)SΔAEH=SΔCFGx2, SΔBEF=SΔDGH-x)(2-x)

∴y=SABCD-2SΔAEH-2SΔBEF=2-x2-(-x)(2-x)=-2x2+(+2)x

∴y=-2x2+(+2)x,(0<x≤2)     (4分)

(2)當(dāng),即<6時(shí),則x=時(shí),y取最大值

當(dāng)≥2,即≥6時(shí),y=-2x2+(+2)x,在0,2]上是增函數(shù),

  則x=2時(shí),y取最大值2-4

綜上所述:當(dāng)<6時(shí),AE=時(shí),綠地面積取最大值

當(dāng)≥6時(shí),AE=2時(shí),綠地面積取最大值2-4。

考點(diǎn):本試題主要考查了實(shí)際問題中的建模和解模能力,注意二次函數(shù)求最值的方法.

點(diǎn)評:解決該試題的關(guān)鍵是運(yùn)用間接法,分割的思想來得到四邊形EFGH的面積,從而建立關(guān)于x的函數(shù)關(guān)系式,運(yùn)用該函數(shù)的思想求解最值。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,

設(shè),數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分,第1小題6分,第2小題6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求AB;

(2) 若,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

設(shè)函數(shù),為常數(shù)),且方程有兩個(gè)實(shí)根為.

(1)求的解析式;

(2)證明:曲線的圖像是一個(gè)中心對稱圖形,并求其對稱中心.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)

如圖所示,直二面角中,四邊形是邊長為的正方形,,上的點(diǎn),且⊥平面

(Ⅰ)求證:⊥平面

(Ⅱ)求二面角的大;

(Ⅲ)求點(diǎn)到平面的距離.

 

查看答案和解析>>

同步練習(xí)冊答案