設(shè)M是△ABC內(nèi)一點,,定義f(x)=(m,n,p),其中m,n,p分別是△MBC,△MAC,△MAB的面積,若,的取值范圍是   
【答案】分析:先確定x+y==,再利用基本不等式,確定a≥18,進而利用函數(shù)的單調(diào)性,即可得出結(jié)論.
解答:解:∵
∴由向量的數(shù)量積公式得


∴x+y==
=2()(x+y)=2(+5)≥=18
當且僅當時.取等號,∴a≥18
在(0,)上單調(diào)遞減,在(,+∞)上單調(diào)遞增
在[18,+∞)上單調(diào)遞增,

的取值范圍是[
故答案為:[).
點評:本題考查基本不等式的應(yīng)用和向量的數(shù)量積,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)M是△ABC內(nèi)一點,且△ABC的面積為1,定義f(M)=(m,n,p),其中m、n、p分別是△MBC,△MCA,△MAB的面積,若f(M)=(
1
2
,x,y),則
1
x
+
4
y
的最小值是( 。
A、8B、9C、16D、18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)M是△ABC內(nèi)一點,且
AB
AC
=2
3
,∠BAC=30°,定義f(M)=(m,n,p),其中m、n、p分別是△MBC,△MCA,△MAB的面積,若f(P)=(
1
2
,x,y)則
1
x
+
4
y
的最小值( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•上海模擬)設(shè)M是△ABC內(nèi)一點,且
AB
AC
=2
3
,∠BAC=30°
,定義f(M)=(m,n,p),其中m、n、p分別是△MBC,△MCA,△MAB的面積,若f(M)=(
1
2
,x,y),則
1
x
+
4
y
的最小值是
18
18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)M是△ABC內(nèi)一點,
AB
AC
=2
3
,∠BAC=30°
,定義f(x)=(m,n,p),其中m,n,p分別是△MBC,△MAC,△MAB的面積,若f(Q)=(
1
2
,x,y)
,
1
x
+
4
y
=a , 則
a2+2
a
的取值范圍是
[
163
9
,+∞
[
163
9
,+∞

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)M是△ABC內(nèi)一點,且
AB
AC
=4
3
,∠BAC=30°
,定義f(M)=(m,n,p),其中m,n,p分別是△MBC,△MCA,△MAB的面積,若f(M)=(1,x,y),則
1
x
+
4
y
的最小值
( 。

查看答案和解析>>

同步練習冊答案