已知函數(shù)f(x)=
1
3
x3+ax2-bx
(a,b∈R)
(1)若y=f(x)圖象上的點(1,-
11
3
)
處的切線斜率為-4,求y=f(x)的極大值;
(2)若y=f(x)在區(qū)間[-1,2]上是單調(diào)減函數(shù),求a+b的最小值.
分析:(1)根據(jù)導(dǎo)數(shù)的幾何意義求出函數(shù)f(x)在x=1處的導(dǎo)數(shù),以及切點在圖象上建立方程組,解之即可求出a和b求出解析式,先求出f′(x)=0的值,再討論滿足f′(x)=0的點附近的導(dǎo)數(shù)的符號的變化情況,來確定極值即可;
(2)將條件“若y=f(x)在區(qū)間[-1,2]上是單調(diào)減函數(shù)”轉(zhuǎn)化成f'(x)=x2+2ax-b≤0在區(qū)間[-1,2]上恒成立,根據(jù)二次函數(shù)圖象建立約束條件,利用線性規(guī)劃的方法求出a+b的最小值即可.
解答:解:(1)∵f'(x)=x2+2ax-b,
∴由題意可知:f'(1)=-4且f(1)=-
11
3
1+2a-b=-4
1
3
+a-b=-
11
3

解得
a=-1
b=3
(3分)
f(x)=
1
3
x3-x2-3x

f'(x)=x2-2x-3=(x+1)(x-3)
令f'(x)=0,得x1=-1,x2=3
由此可知:
精英家教網(wǎng)
∴當(dāng)x=-1時,f(x)取極大值
5
3
.(6分)
(2)∵y=f(x)在區(qū)間[-1,2]上是單調(diào)減函數(shù),
∴f'(x)=x2+2ax-b≤0在區(qū)間[-1,2]上恒成立.
根據(jù)二次函數(shù)圖象可知f'(-1)≤0且f'(2)≤0,
精英家教網(wǎng)
即:
1-2a-b≤0
4+4a-b≤0

也即
2a+b-1≤0
4a-b+4≤0
(9分)
作出不等式組表示的平面區(qū)域如圖:
精英家教網(wǎng)
當(dāng)直線z=a+b經(jīng)過交點P(-
1
2
,2)
時,z=a+b取得最小值z=-
1
2
+2=
3
2

∴z=a+b取得最小值為
3
2
(12分)
點評:本題主要考查了利用導(dǎo)數(shù)研究曲線上某點切線方程,以及函數(shù)的單調(diào)性和線性規(guī)劃的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)、已知函數(shù)f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函數(shù)f(x)=2cos2x-2
3
sinxcosx
的圖象按向量
m
=(
π
6
,-1)
平移后,得到一個函數(shù)g(x)的圖象,求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(1-
a
x
)ex
,若同時滿足條件:
①?x0∈(0,+∞),x0為f(x)的一個極大值點;
②?x∈(8,+∞),f(x)>0.
則實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+lnx
x

(1)如果a>0,函數(shù)在區(qū)間(a,a+
1
2
)
上存在極值,求實數(shù)a的取值范圍;
(2)當(dāng)x≥1時,不等式f(x)≥
k
x+1
恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
與f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在D上的函數(shù)f(x)如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=
1-m•2x1+m•2x

(1)m=1時,求函數(shù)f(x)在(-∞,0)上的值域,并判斷f(x)在(-∞,0)上是否為有界函數(shù),請說明理由;
(2)若函數(shù)f(x)在[0,1]上是以3為上界的有界函數(shù),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案