某先生居住在城鎮(zhèn)的A處,準(zhǔn)備開車到單位C處上班,若該地各路段發(fā)生堵車事件都是相互獨(dú)立的,且在同一路段發(fā)生堵車事件最多只有一次,發(fā)生堵車事件的概率如下圖(例如,路段AB發(fā)生堵車事件的概率為
1
10
,路段BC發(fā)生堵車事件的概率為
1
15
).
(1)請(qǐng)你為其選擇一條由A到C的路線,使得途中發(fā)生堵車事件的概率最;
(2)若記路線A→B→C中遇到堵車次數(shù)為隨機(jī)變量ξ,求ξ的數(shù)學(xué)期望Eξ.
考點(diǎn):離散型隨機(jī)變量的期望與方差,相互獨(dú)立事件的概率乘法公式
專題:計(jì)算題
分析:(1)因?yàn)楦髀范伟l(fā)生堵車事件都是獨(dú)立的,且在同一路段發(fā)生堵車事件最多只有一次,所以路線A→C中遇到堵車的概率P1可以做出,路線A→D→C中遇到堵車的概率P2,路線A→B→C中遇到堵車的概率P3,進(jìn)行比較得到結(jié)果.
(2)由題意知路線A→B→C中遇到堵車次數(shù)X可取值為0,1,2.結(jié)合變量對(duì)應(yīng)的事件,能夠求出變量的期望.
解答: 解:∵各路段發(fā)生堵車事件都是獨(dú)立的,
且在同一路段發(fā)生堵車事件最多只有一次,
∴路線A→C中遇到堵車的概率P1=
1
4
;
路線A→D→C中遇到堵車的概率P2=1-(1-
1
5
)(1-
1
20
)
=
6
25
;
路線A→B→C中遇到堵車的概率P3=1-(1-
1
10
)(1-
1
15
)
=
4
25

∴路線A→B→C中遇到堵車的概率最。
(2)由題意知路線A→B→C中遇到堵車次數(shù)X可取值為0,1,2.
P(X=0)=(1-
1
10
)(1-
1
15
)
=
21
25
,
P(X=1)=
1
10
×(1-
1
15
) +(1-
1
10
1
15
=
23
150
,
P(X=2)=
1
10
×
1
15
=
1
150

∴EX=
21
25
+1×
23
150
+2×
1
150
=
1
6
點(diǎn)評(píng):本題考查離散型隨機(jī)變量的分布列和期望問題,考查相互獨(dú)立事件同時(shí)發(fā)生的概率,求離散型隨機(jī)變量的分布列和期望是近年來理科高考必出的一個(gè)問題,題目做起來不難.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[10,20]內(nèi)的所有實(shí)數(shù)中,隨機(jī)取一個(gè)實(shí)數(shù)a,則a<15的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列計(jì)算正確的是( 。
A、a6÷a6=0
B、(-bc)4÷(-bc)2=-bc
C、y4+y6=y10
D、(ab44=a4b16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α為銳角,且tanα=
2
-1,函數(shù)f(x)=x2tan2α+x•sin(2α+
π
4
),則f(-1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程x2+y2-2mx+2my-2=0表示的曲線恒過第三象限的一個(gè)定點(diǎn)A,若點(diǎn)A又在直線l:mx+ny+1=0上,則當(dāng)正數(shù)m,n的乘積取得最大值時(shí)直線l的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若x,y∈[-1,1],x+y≠0有(x+y)•[f(x)+f(y)]>0.
(1)判斷f(x)的單調(diào)性,并加以證明;
(2)解不等式f(x+
1
2
)<f(1-2x)
;
(3)若f(x)≤m2-2am+1對(duì)所有x∈[-1,1],a∈[-1,1]恒成立.求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)甲、乙兩人進(jìn)行投籃訓(xùn)練,甲投進(jìn)的概率為
2
5
,乙投進(jìn)的概率為
3
4
,兩人投進(jìn)與否要睛互沒有影響.
(Ⅰ)兩人各投1次,求恰有1人投進(jìn)的概率;
(Ⅱ)若隨機(jī)變量ξ表示乙投籃3次后投進(jìn)的總次數(shù),求ξ的分布列及數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于定義在D上的函數(shù)y=f(x),若同時(shí)滿足
(Ⅰ)存在閉區(qū)間A=
π
3
,B=x,C>0
,使得任取x1∈[a,b],都有f(x1)=c(c是常數(shù));
(Ⅱ)對(duì)于D內(nèi)任意x2,當(dāng)x2∉[a,b]時(shí)總有f(x2)>c,則稱f(x)為“平底型”函數(shù).
(1)判斷f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函數(shù)?簡(jiǎn)要說明理由;
(2)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-1|+|t+1|≥f(x),對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(3)若x=4時(shí),f(x)是“平底型”函數(shù),求m和n滿足的條件,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
16
+
y2
9
=1
,直線l:(2m+1)x+(1-m)y-5m-4=0(m∈R)
(1)證明:不論m取任何實(shí)數(shù),直線l與橢圓C恒交于兩點(diǎn);
(2)設(shè)直線l與橢圓C的兩個(gè)交點(diǎn)為A.B,M為弦AB的中點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)m∈R且m≠-
1
2
,m≠1時(shí),記直線l的斜率為kAB,直線OM的斜率為kOM,求證:kABkOM為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案