已知y=a-bcos3x(b>0)的最大值為,最小值為-
(1)求a,b的值;
(2)求函數(shù)y=-4asin(3bx)的周期;
(3)函數(shù)y=-4asin(3bx)最小值的x的取值集合;
(4)判斷其奇偶性.
【答案】分析:(1)由題意可得,由此求得a,b的值.
(2)由(1)可得函數(shù)y=-4asin(3bx)=-2sin3x,由此求得函數(shù)的周期T.
(3)當3x=2kπ+,k∈Z,函數(shù)取得最小值,由此求得函數(shù)取得最小值的x的取值集合.
(4)函數(shù)的定義域為R,f且(-x)=-f(x),故函數(shù)為奇函數(shù).
解答:解:(1)∵y=a-bcos3x的最大值為,最小值為-,b>0,
,解得
(2)由上可得函數(shù)y=-4asin(3bx)=-2sin3x,∴此函數(shù)的周期T=
(3)令3x=2kπ+,即 x=+(k∈Z)時,函數(shù)取得最小值-2.
故函數(shù)取得最小值時,x的取值集合為{x|x=+,k∈Z}.
(4)∵函數(shù)解析式f(x)=-2sin3x,定義域為R,
 且f(-x)=-2sin(-3x)=2sin3x=-f(x),
∴y=-2sin3x為奇函數(shù).
點評:本題主要考查正弦函數(shù)的定義域和值域,周期性和奇偶性,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=a-bcos(2x+
π
6
)(b>0)
的最大值為
3
2
,最小值為-
1
2

(1)求a、b的值;
(2)求函數(shù)g(x)=-4asin(bx-
π
3
)在區(qū)間[0,π]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•杭州二模)已知a2sinθ+acosθ-2=0,b2sinθ+bcosθ-2=0(a,b,θ∈R,且a≠b),直線l過點A(a,a2),B(b,b2),則直線l被
圓(x-cosθ)2+(y-sinθ)2=4所截得的弦長為
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知y=a-bcos 3x(b>0)的最大值為
3
2
,最小值為-
1
2
,求函數(shù)y=-4asin(3bx)的周期、最值及取得最值時的x,并判斷其奇偶性.

查看答案和解析>>

科目:高中數(shù)學 來源:《7.3 三角函數(shù)的圖象與性質》2013年高考數(shù)學優(yōu)化訓練(文科)(解析版) 題型:解答題

已知y=a-bcos 3x(b>0)的最大值為,最小值為-,求函數(shù)y=-4asin(3bx)的周期、最值及取得最值時的x,并判斷其奇偶性.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知y=a-bcos 3x(b>0)的最大值為
3
2
,最小值為-
1
2
,求函數(shù)y=-4asin(3bx)的周期、最值及取得最值時的x,并判斷其奇偶性.

查看答案和解析>>

同步練習冊答案