5、設(shè)函數(shù)f(x)=4sinx-x,則在下列區(qū)間中函數(shù)f(x)存在零點(diǎn)的是( 。
分析:根據(jù)函數(shù)f(x)=4sinx-x,結(jié)合零點(diǎn)存在定理,我們可以分別判斷四個(gè)答案中的四區(qū)間,如果區(qū)間(a,b)滿足f(a)•f(b)<0,則函數(shù)在區(qū)間(a,b)有零點(diǎn).
解答:解:因?yàn)楹瘮?shù)f(x)=4sinx-x,
所以f(-3)=-4sin3+3>0,f(-2)=-4sin2+2<0,
所以f(-3)•f(-2)<0.
所以區(qū)間[-3,-2]存在函數(shù)f(x)的零點(diǎn).
故選B.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)零點(diǎn)的判定定理,其中連續(xù)函數(shù)在區(qū)間(a,b)滿足f(a)•f(b)<0,則函數(shù)在區(qū)間(a,b)有零點(diǎn),是判斷函數(shù)零點(diǎn)存在最常用的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)y=f(x)是增函數(shù),且函數(shù)y=f(x-2)的圖象關(guān)于(2,0)成中心對(duì)稱,設(shè)s,t滿足不等式f(s2-4s)≥-f(4t-t2),若-2≤s≤2時(shí),則3t+s的范圍是
[-8,16]
[-8,16]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年高考數(shù)學(xué)文科(寧夏卷) 題型:044

已知函數(shù)f(x)x33ax29a2xa3

(1)設(shè)a1,求函數(shù)f(x)的極值;

(2)a,且當(dāng)x[14s]時(shí),|(x)|12a恒成立,試確定a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

定義在R上的函數(shù)y=f(x)是增函數(shù),且函數(shù)y=f(x-2)的圖象關(guān)于(2,0)成中心對(duì)稱,設(shè)s,t滿足不等式f(s2-4s)≥-f(4t-t2),若-2≤s≤2時(shí),則3t+s的范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省無錫市高三(上)期中數(shù)學(xué)試卷(解析版) 題型:填空題

定義在R上的函數(shù)y=f(x)是增函數(shù),且函數(shù)y=f(x-2)的圖象關(guān)于(2,0)成中心對(duì)稱,設(shè)s,t滿足不等式f(s2-4s)≥-f(4t-t2),若-2≤s≤2時(shí),則3t+s的范圍是   

查看答案和解析>>

同步練習(xí)冊(cè)答案