數(shù)列{an},“an+1>|an|(n=1,2,…)”是“{an}為遞增數(shù)列”的________條件.

充分不必要
分析:從兩個(gè)方面來(lái)考慮,由an+1>|an|(n=1,2,)知{an}所有項(xiàng)均為正項(xiàng),且a1<a2<…<an<an+1,這樣前者可以推出后者,反過(guò)來(lái),{an}為遞增數(shù)列,不一定有an+1>|an|(n=1,2,).
解答:由an+1>|an|(n=1,2,)知{an}所有項(xiàng)均為正項(xiàng),
且a1<a2<…<an<an+1,
即{an}為遞增數(shù)列
反之,{an}為遞增數(shù)列,不一定有an+1>|an|(n=1,2,),
如-2,-1,0,1,2,
故答案為充分不必要條件
點(diǎn)評(píng):有關(guān)數(shù)列的試題經(jīng)常是綜合題,經(jīng)常把數(shù)列知識(shí)和指數(shù)函數(shù)、對(duì)數(shù)函數(shù)和不等式的知識(shí)綜合起來(lái),試題也常把等差數(shù)列、等比數(shù)列,求極限和數(shù)學(xué)歸納法綜合在一起.本題是把數(shù)列同條件的判斷結(jié)合在一起.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

23、在數(shù)列{an}中,a1=2,an+1=λann+1+(2-λ)2n(n∈N+).(Ⅰ)求a2,a3,a4,并猜想數(shù)列{an}的通項(xiàng)公式(不必證明);(Ⅱ)證明:當(dāng)λ≠0時(shí),數(shù)列{an}不是等比數(shù)列;(Ⅲ)當(dāng)λ=1時(shí),試比較an與n2+1的大小,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于數(shù)列{xn},如果存在一個(gè)正整數(shù)m,使得對(duì)任意的n(n∈N*)都有xn+m=xn成立,那么就把這樣一類數(shù)列{xn}稱作周期為m的周期數(shù)列,m的最小值稱作數(shù)列{xn}的最小正周期,以下簡(jiǎn)稱周期.例如當(dāng)xn=2時(shí),{xn}是周期為1的周期數(shù)列,當(dāng)yn=sin(
π
2
n)
時(shí),{yn}的周期為4的周期數(shù)列.
(1)設(shè)數(shù)列{an}滿足an+2=λ•an+1-an(n∈N*),a1+a,a2=b(a,b不同時(shí)為0),且數(shù)列{an}是周期為3的周期數(shù)列,求常數(shù)λ的值;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且4Sn=(an+1)2
①若an>0,試判斷數(shù)列{an}是否為周期數(shù)列,并說(shuō)明理由;
②若anan+1<0,試判斷數(shù)列{an}是否為周期數(shù)列,并說(shuō)明理由.
(3)設(shè)數(shù)列{an}滿足an+2=-an+1-an(n∈N*),a1=1,a2=2,bn=an+1,數(shù)列{bn}的前n項(xiàng)和Sn,試問(wèn)是否存在p、q,使對(duì)任意的n∈N*都有p≤
Sn
n
≤q
成立,若存在,求出p、q的取值范圍;不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)的定義域?yàn)镽,數(shù)列{an}滿足an=f(an-1)(n∈N*且n≥2).
(Ⅰ)若數(shù)列{an}是等差數(shù)列,a1≠a2,且f(an)-f(an-1)=k(an-an-1)(k為非零常數(shù),n∈N*且n≥2),求k的值;
(Ⅱ)若f(x)=kx(k>1),a1=2,bn=lnan(n∈N*),數(shù)列{bn}的前n項(xiàng)和為Sn,對(duì)于給定的正整數(shù)m,如果
S(m+1)nSmn
的值與n無(wú)關(guān),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=-2x2+2x,數(shù)列{an}滿足an+1=f(an).
(1)試寫出一個(gè)區(qū)間(a,b),使得當(dāng)a1∈(a,b)時(shí),數(shù)列{an}在這個(gè)區(qū)間上是遞增數(shù)列,并說(shuō)明理由;
(2)令bn=
1
2
-an
,試證明數(shù)列{lgbn+lg2}是等比數(shù)列
(3)已知,記Sn=log3(
1
1
2
-a1
)+log3(
1
1
2
-a2
)+…+log3(
1
1
2
-an
)
,是否存在非零整數(shù)λ,使Sn2n+(log32)n-1>(-1)n-12λ+nlog32-1nlog32-1對(duì)任意的n∈N*恒成立?如果存在,求出λ的值,如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

關(guān)于數(shù)列有下列四個(gè)判斷:
①若a,b,c,d成等比數(shù)列,則a+b,b+c,c+d也成等比數(shù)列;
②若數(shù)列{an}是等比數(shù)列,則Sn,S2n-Sn,S3n-S2n…也成等比數(shù)列;
③若數(shù)列{an}既是等差數(shù)列也是等比數(shù)列,則{an}為常數(shù)列;
④數(shù)列{an}的前n項(xiàng)的和為Sn,且數(shù)學(xué)公式,則{an}為等差或等比數(shù)列;
⑤數(shù)列{an}為等差數(shù)列,且公差不為零,則數(shù)列{an}中不會(huì)有am=an(m≠n).
其中正確命題的序號(hào)是________.(請(qǐng)將正確命題的序號(hào)都填上)

查看答案和解析>>

同步練習(xí)冊(cè)答案