已知偶函數(shù)y=f(x)(x∈R)在區(qū)間[0,3]上單調(diào)遞增,在區(qū)間[3,+∞)上單調(diào)遞減,且滿足f(-4)=f(1)=0,則不等式x3f(x)<0的解集是( 。
分析:作出函數(shù)f(x)的草圖,x3f(x)<0?
x3>0
f(x)<0
x3<0
f(x)>0
,根據(jù)圖象即可解得不等式組的解集.
解答:解:根據(jù)題意作出函數(shù)y=f(x)的草圖:

由圖象知,x3f(x)<0?
x3>0
f(x)<0
x3<0
f(x)>0
?
x>0
x<-4或-1<x<1或x>4
x<0
-4<x<-1或1<x<4
,
解得0<x<1或x>4或-4<x<-1,
故選D.
點評:本題考查函數(shù)的奇偶性、單調(diào)性,考查抽象不等式的求解,考查數(shù)形結(jié)合思想,屬中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

35、已知偶函數(shù)y=f(x)(x∈R)在區(qū)間[-1,0]上單調(diào)遞增,且滿足f(1-x)+f(1+x)=0,給出下列判斷:(1)f(5)=0;(2)f(x)在[1,2]上減函數(shù);(3)f(x)的圖象關(guān)與直線x=1對稱;(4)函數(shù)f(x)在x=0處取得最大值;(5)函數(shù)y=f(x)沒有最小值,其中正確的序號是
(1)(2)(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知偶函數(shù)y=f(x)在[-1,0]上為單調(diào)遞減函數(shù),又α、β為銳角三角形的兩內(nèi)角,則(  )
A、f(sinα)>f(cosβ)B、f(sinα)<f(cosβ)C、f(sinα)>f(sinβ)D、f(cosα)>f(cosβ)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知偶函數(shù)y=f(x)滿足條件f(x+1)=f(x-1),且當x∈[-1,0]時,f(x)=3x+
4
9
,則f(log
1
3
5)
的值等于
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知偶函數(shù)y=f(x)在區(qū)間(-∞,0]上是增函數(shù),下列不等式一定成立的是( 。

查看答案和解析>>

同步練習冊答案