【題目】已知空間三點A(0,2,3),B(﹣2,1,6),C(1,﹣1,5);求:
(1)求以向量 為一組鄰邊的平行四邊形的面積S;
(2)若向量a分別與向量 垂直,且|a|= ,求向量a的坐標(biāo).

【答案】
(1)解:∵空間三點A(0,2,3),B(﹣2,1,6),C(1,﹣1,5)

=(﹣2,﹣1,3), =(1,﹣3,2), =(3,﹣2,﹣1)

∵| |=| |=| |=

∴△ABC為等邊三角形,故以向量 為一組鄰邊的平行四邊形的面積S= =7


(2)解:設(shè) =(x,y,z),由已知中向量 分別與向量 垂直,且| |= ,

解得x=y=z=±1

=(1,1,1)或 =(﹣1,﹣1,﹣1)


【解析】(1)由已知中空間三點A(0,2,3),B(﹣2,1,6),C(1,﹣1,5),我們分別求出向量 , 的坐標(biāo),進而根據(jù)它們?nèi)齻的模相等,判斷出三角形ABC為等邊三角形,進而得到以向量 為一組鄰邊的平行四邊形的面積S;(2)根據(jù)(1)中結(jié)論,易向量 分別與向量 垂直,且| |= ,設(shè)出向量 的坐標(biāo),進而構(gòu)造方程組,解方程組即可求出向量 的坐標(biāo).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (a>0).
(1)證明函數(shù)f(x)在(0,2]上是減函數(shù),(2,+∞)上是增函數(shù);
(2)若方程f(x)=0有且只有一個實數(shù)根,判斷函數(shù)g(x)=f(x)﹣4的奇偶性;
(3)在(2)的條件下探求方程f(x)=m(m≥8)的根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的導(dǎo)函數(shù).

(1)若處的切線方程為,求的值;

(2)若時取得最小值,求的取值范圍;

(3)在(1)的條件下,當(dāng)時, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= 是奇函數(shù).
(1)求實數(shù)a的值;
(2)用定義證明函數(shù)f(x)在R上的單調(diào)性;
(3)若對任意的x∈R,不等式f(x2﹣x)+f(2x2﹣k)>0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,側(cè)面為菱形且, , 分別為的中點, , ,

(Ⅰ)證明:直線∥平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)絡(luò)營銷部門為了統(tǒng)計某市網(wǎng)友2016年12月12日的網(wǎng)購情況,從該市當(dāng)天參與網(wǎng)購的顧客中隨機抽查了男女各30人,統(tǒng)計其網(wǎng)購金額,得到如下頻率分布直方圖:

網(wǎng)購達人

非網(wǎng)購達人

合計

男性

30

女性

12

30

合計

60

若網(wǎng)購金額超過千元的顧客稱為“網(wǎng)購達人”,網(wǎng)購金額不超過千元的顧客稱為“非網(wǎng)購達人”.

(Ⅰ)若抽取的“網(wǎng)購達人”中女性占12人,請根據(jù)條件完成上面的列聯(lián)表,并判斷是否有99%的把握認為“網(wǎng)購達人”與性別有關(guān)?

(Ⅱ)該營銷部門為了進一步了解這名網(wǎng)友的購物體驗,從“非網(wǎng)購達人”、“網(wǎng)購達人”中用分層抽樣的方法確定12人,若需從這12人中隨機選取人進行問卷調(diào)查.設(shè)為選取的人中“網(wǎng)購達人”的人數(shù),求的分布列和數(shù)學(xué)期望.

(參考公式: ,其中

P()

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)= (x∈R),若f(x)滿足f(﹣x)=﹣f(x).
(1)求實數(shù)a的值;
(2)證明f(x)是R上的單調(diào)減函數(shù)(定義法).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|y= },B={x|﹣1≤2x﹣1≤0},則(RA)∩B=(
A.(4,+∞)
B.
C.
D.(1,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是自然對數(shù)的底數(shù), , , .

(1)設(shè),求的極值;

(2)設(shè),求證:函數(shù)沒有零點;

(3)若,設(shè),求證: .

查看答案和解析>>

同步練習(xí)冊答案