【題目】近年來,我國電子商務蓬勃發(fā)展.2016年“618”期間,某網購平臺的銷售業(yè)績高達516億元人民幣,與此同時,相關管理部門推出了針對該網購平臺的商品和服務的評價系統(tǒng).從該評價系統(tǒng)中選出200次成功交易,并對其評價進行統(tǒng)計,網購者對商品的滿意率為0.6,對服務的滿意率為0.75,其中對商品和服務都滿意的交易為80次.
(1)根據已知條件完成下面的列聯表,并回答能否有的把握認為“網購者對商品滿意與對服務滿意之間有關系”?
對服務滿意 | 對服務不滿意 | 合計 | |
對商品滿意 | 80 | ||
對商品不滿意 | 10 | ||
合計 | 200 |
(2)若將頻率視為概率,某人在該網購平臺上進行的3次購物中,設對商品和服務都滿意的次數為隨機變量,求的分布列和數學期望.
臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.897 | 10.828 |
的觀測值:(其中).
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當時,求在處的切線方程;
(2)令,已知函數有兩個極值點,且,求實數的取值范圍;
(3)在(2)的條件下,若存在,使不等式對任意(取值范圍內的值)恒成立,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列的前n項和,且滿足,,數列是首項為2,公比為q()的等比數列.
(1)求數列的通項公式;
(2)設正整數k,t,r成等差數列,且,若,求實數q的最大值;
(3)若數列滿足,,其前n項和為,當時,是否存在正整數m,使得恰好是數列中的項?若存在,求岀m的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】根據統(tǒng)計,某蔬菜基地西紅柿畝產量的增加量(百千克)與某種液體肥料每畝使用量(千克)之間的對應數據的散點圖,如圖所示.
(1)依據數據的散點圖可以看出,可用線性回歸模型擬合與的關系,請計算相關系數并加以說明(若,則線性相關程度很高,可用線性回歸模型擬合);
(2)求關于的回歸方程,并預測液體肥料每畝使用量為12千克時,西紅柿畝產量的增加量約為多少?
附:相關系數公式,參考數據:,.
回歸方程中斜率和截距的最小二乘估計公式分別為:,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的長軸長為,焦距為2,拋物線的準線經過C的左焦點F.
(1)求C與M的方程;
(2)直線l經過C的上頂點且l與M交于P,Q兩點,直線FP,FQ與M分別交于點D(異于點P),E(異于點Q),證明:直線DE的斜率為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線與曲線,(為參數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系.
(1)寫出曲線,的極坐標方程;
(2)在極坐標系中,已知與,的公共點分別為,,,當時,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:的離心率為,過焦點且與軸垂直的直線被橢圓截得的線段長為.
(1)求橢圓的方程;
(2)已知點,,過點的任意一條直線與橢圓交于,兩點,求證:.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com