過拋物線y2=4x的焦點F的直線交拋物線于A、B兩點,則+=   
【答案】分析:根據(jù)拋物線方程可求得焦點坐標(biāo)和準(zhǔn)線方程,設(shè)過F的直線方程,與拋物線方程聯(lián)立,整理后,設(shè)A(x1,y1),B(x2,y2)根據(jù)韋達(dá)定理可求得x1x2的值,又根據(jù)拋物線定義可知|AF|=x1+1,|BF|=x2+1代入+答案可得.
解答:解:易知F坐標(biāo)(1,0)準(zhǔn)線方程為x=-1.
設(shè)過F點直線方程為y=k(x-1)
代入拋物線方程,得 k2(x-1)2=4x.
化簡后為:k2x2-(2k2+4)x+k2=0.
設(shè)A(x1,y1),B(x2,y2
則有x1x2=1
根據(jù)拋物線性質(zhì)可知,|AF|=x1+1,|BF|=x2+1
+====1
故答案為1
點評:本題主要考查拋物線的應(yīng)用和拋物線定義.對于過拋物線焦點的直線與拋物線關(guān)系,常用拋物線的定義來解決.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

傾斜角為
π
4
的直線過拋物線y2=4x的焦點且與拋物線交于A,B兩點,則|AB|=( 。
A、
13
B、8
2
C、16
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點F引兩條互相垂直的直線AB、CD交拋物線于A、B、C、D四點.
(1)求當(dāng)|AB|+|CD|取最小值時直線AB、CD的傾斜角的大小
(2)求四邊形ACBD的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點F的直線交該拋物線于A,B兩點,O為坐標(biāo)原點.若|AF|=3,則△AOB的面積為
3
2
2
3
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點F的直線交拋物線于A、B兩點,點O是坐標(biāo)原點,若|AF|=5,則△AOB的面積為(  )
A、5
B、
5
2
C、
3
2
D、
17
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點F的直線交拋物線于A、B兩點,A、B兩點在準(zhǔn)線l上的射影分別為M.N,則∠MFN=(  )

查看答案和解析>>

同步練習(xí)冊答案