已知二次函數(shù)h(x)與x軸的兩交點為(-2,0),(3,0),且h(0)=-3,求h(x).

解:由題意可設(shè)二次函數(shù)的解析式h(x)=a(x-3)(x+2)
∵h(0)=-3,


分析:由題意可設(shè)二次函數(shù)的解析式h(x)=a(x-3)(x+2),把h(0)=-3代入可求a的值,從而求h(x)
點評:本題主要考查了利用待定系數(shù)法求二次函數(shù)的解析式及二次函數(shù)解析式的兩根式.二次函數(shù)的表達式有三種①一般式:y=ax2+bx+c ②兩根式:y=a(x-x1)(x-x2) ③定點式:y=a(x-h)2+k
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知二次函數(shù)h(x)=ax2+bx+c(其中c<3),其導函數(shù)y=h′(x)的圖象如圖,f(x)=6lnx+h(x).
(1)求函數(shù)f(x)在x=3處的切線斜率;
(2)若函數(shù)f(x)在區(qū)間(1,m+
12
)
上是單調(diào)函數(shù),求實數(shù)m的取值范圍;
(3)若函數(shù)y=-x,x∈(0,6]的圖象總在函數(shù)y=f(x)圖象的上方,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)h(x)與x軸的兩交點為(-2,0),(3,0),且h(0)=-3,求h(x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)h(x)=ax2+bx+c(c>0),其導函數(shù)y=h′(x)的圖象如圖所示,f(x)=lnx-h(x).
(1)求函數(shù)f(x)在x=1處的切線斜率;
(2)若函數(shù)f(x)在區(qū)間(
1
2
,m+
1
4
)上是單調(diào)函數(shù),求實數(shù)m的取值范圍;
(3)若函數(shù)y=2x-ln x(x∈[1,4])的圖象總在函數(shù)y=f(x)的圖象的上方,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2014•達州一模)已知二次函數(shù)h(x)=ax2+bx+c(其中c<3),其導函數(shù)y=h′(x)的圖象如圖,f(x)=6lnx+h(x).
(I)求函數(shù)f(x)在x=3處的切線斜率;
(Ⅱ)若函數(shù)f(x)在區(qū)間(m,m+
12
)上是單調(diào)函數(shù),求實數(shù)m的取值范圍;
(Ⅲ)若對任意k∈[-1,1],函數(shù)y=kx,x∈(0,6]的圖象總在函數(shù)y=f(x)圖象的上方,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(第三、四層次學校的學生做次題)
已知二次函數(shù)h(x)=ax2+bx+c(c>0),其導函數(shù)y=h′(x)的圖象如下,且f(x)=lnx-h(x).
(1)求a,b的值;
(2)若函數(shù)f(x)在(
1
2
,m+
1
4
)
上是單調(diào)遞減函數(shù),求實數(shù)m的取值范圍;
(3)若函數(shù)y=2x-lnx(x∈[1,4])的圖象總在函數(shù)y=f(x)的圖象的上方,求c的取值范圍.

查看答案和解析>>

同步練習冊答案