【題目】在無窮數(shù)列{an}中,a1=p是正整數(shù),且滿足 (Ⅰ)當(dāng)a3=9時,給出p的值;(結(jié)論不要求證明)
(Ⅱ)設(shè)p=7,數(shù)列{an}的前n項和為Sn , 求S150;
(Ⅲ)如果存在m∈N* , 使得am=1,求出符合條件的p的所有值.
【答案】解:(Ⅰ)p=36,或13.
(Ⅱ)由題意,a1=7,
代入,得a2=12,a3=6,a4=3,a5=8,a6=4,a7=2,a8=1,a9=6,…
所以數(shù)列{an}中的項,從第三項起每隔6項重復(fù)一次(注:a3=a9),
故S150=a1+a2+24(a3+a4+…+a8)+a3+a4+a5+a6
=7+12+24(6+3+8+4+2+1)+6+3+8+4=616.
(Ⅲ)由數(shù)列{an}的定義,知 .
設(shè)t為數(shù)列{an}中最小的數(shù),即 ,
又因為當(dāng)an為偶數(shù)時, ,
所以t必為奇數(shù).
設(shè)ak=t,則ak+1=t+5, ,
所以 ,解得t≤5.
所以t∈{1,3,5}.
如果ak=t=3,
那么由數(shù)列{an}的定義,得ak+1=8,ak+2=4,ak+3=2,ak+4=1,
這顯然與t=3為{an}中最小的數(shù)矛盾,
所以t≠3.
如果ak=t=5,
當(dāng)k=1時,p=5;
當(dāng)k≥2時,由數(shù)列{an}的定義,得ak﹣1能被5整除,…,得a1=p被5整除;
所以當(dāng)且僅當(dāng) 時,t=5.
這與題意不符.
所以當(dāng) 時,數(shù)列{an}中最小的數(shù)t=1,
即符合條件的p值的集合是{r|r∈N*,且r不能被5整除}.
【解析】(Ⅰ)由分段數(shù)列,推斷計算即可得到所求p的值;(Ⅱ)由題意可得數(shù)列{an}中的項,從第三項起每隔6項重復(fù)一次,即可得到所求和;(Ⅲ)由數(shù)列{an}的定義,知 .設(shè)t為數(shù)列{an}中最小的數(shù),即 ,推得t∈{1,3,5}.分別討論t=3,5,1,推理,即可得到符合條件的p值的集合.
【考點精析】本題主要考查了數(shù)列的前n項和和數(shù)列的通項公式的相關(guān)知識點,需要掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系;如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|1﹣m≤x≤2m+1},B= .
(1)當(dāng)m=2時,求A∩B,A∪B;
(2)若BA,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電力部門需在A、B兩地之間架設(shè)高壓電線,因地理條件限制,不能直接測量A、B兩地距離.現(xiàn)測量人員在相距 km的C、D兩地(假設(shè)A、B、C、D在同一平面上)測得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(如圖),假如考慮到電線的自然下垂和施工損耗等原因,實際所須電線長度為A、B距離的 倍,問施工單位應(yīng)該準備多長的電線?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,a3=12,a11=﹣5,且任意連續(xù)三項的和均為11,則a2017=;設(shè)Sn是數(shù)列{an}的前n項和,則使得Sn≤100成立的最大整數(shù)n= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l與拋物線y2=2x相交于A(x1 , y1),B(x2 , y2)兩點,與x軸相交于點M,若y1y2=﹣4,
(1)求:M點的坐標;
(2)求證:OA⊥OB;
(3)求△AOB的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等腰梯形ABCD中,AB∥CD,且|AB|=2,|AD|=1,|CD|=2x其中x∈(0,1),以A,B為焦點且過點D的雙曲線的離心率為e1 , 以C,D為焦點且過點A的橢圓的離心率為e2 , 若對任意x∈(0,1)不等式t<e1+e2恒成立,則t的最大值為( )
A.
B.
C.2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是兩個邊長為2的正三角形,DC=4,O為BD的中點.
(1)求證:PO⊥平面ABCD;
(2)若E為線段PA上一點,且 ,求二面角P﹣OE﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)y=f(x),滿足f(1﹣x)=f(x),(x﹣ )f′(x)>0,若x1<x2且x1+x2>1,則有( )
A.f(x1)<f(x2)
B.f(x1)>f(x2)
C.f(x1)=f(x2)
D.不能確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com