已知函數(shù)處取得極值.
(1)求、的值;(2)求的單調(diào)區(qū)間.
(1)、
(2)的單調(diào)增區(qū)間為,的單調(diào)減區(qū)間為.

試題分析:(1)由已知
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015419701446.png" style="vertical-align:middle;" />在處取得極值,所以1和2是方程的兩根
、
(2)由(1)可得 
當(dāng)時(shí),是增加的;
當(dāng)時(shí),,是減少的。
所以,的單調(diào)增區(qū)間為,的單調(diào)減區(qū)間為.
點(diǎn)評:中檔題,本題屬于導(dǎo)數(shù)的基本應(yīng)用問題。在給定區(qū)間,導(dǎo)函數(shù)值非負(fù),函數(shù)為增函數(shù);導(dǎo)函數(shù)值非正,函數(shù)為減函數(shù)。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)=,=,若曲線和曲線都過點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線.
(Ⅰ)求,,,的值;
(Ⅱ)若≥-2時(shí),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),
(Ⅰ)當(dāng)a=1時(shí),若曲線y=f(x)在點(diǎn)M (x0,f(x0))處的切線與曲線y=g(x)在點(diǎn)P (x0, g(x0))處的切線平行,求實(shí)數(shù)x0的值;
(II)若(0,e],都有f(x)≥g(x)+,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè), 已知函數(shù) 
(Ⅰ) 證明在區(qū)間(-1,1)內(nèi)單調(diào)遞減, 在區(qū)間(1, + ∞)內(nèi)單調(diào)遞增;
(Ⅱ) 設(shè)曲線在點(diǎn)處的切線相互平行, 且 證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù),,其中為實(shí)數(shù).
(1)若上是單調(diào)減函數(shù),且上有最小值,求的取值范圍;
(2)若上是單調(diào)增函數(shù),試求的零點(diǎn)個(gè)數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)若處取得極值,求的極大值;
(2)若在區(qū)間的圖像在圖像的上方(沒有公共點(diǎn)),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

,則等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè),曲線在點(diǎn)處切線的傾斜角的取值范圍為,則點(diǎn)到曲線對稱軸距離的取值范圍是(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案