【題目】下列命題正確的是( )
A.存在 ,使得 的否定是:不存在 ,使得
B.對(duì)任意 ,均有 的否定是:存在 ,使得
C.若 ,則 的否命題是:若 ,則
D.若 為假命題,則命題 必一真一假

【答案】A
【解析】A選項(xiàng)命題的否定是:對(duì)任意 ,均有 ,即:不存在 ,使得 ,所以A正確;
B選項(xiàng)命題的否定是:存在 ,使得 ,所以B錯(cuò);
C選項(xiàng)否命題中“或”應(yīng)是“且”,所以C錯(cuò);
D選項(xiàng)命題AB都是假,所以D錯(cuò);
所以答案是:A.
【考點(diǎn)精析】本題主要考查了四種命題的真假關(guān)系和復(fù)合命題的真假的相關(guān)知識(shí)點(diǎn),需要掌握一個(gè)命題的真假與其他三個(gè)命題的真假有如下三條關(guān)系:(原命題 逆否命題)①、原命題為真,它的逆命題不一定為真;②、原命題為真,它的否命題不一定為真;③、原命題為真,它的逆否命題一定為真;“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時(shí)為真,其他情況時(shí)為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時(shí)為假,其他情況時(shí)為真才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,其中 為自然對(duì)數(shù)的底數(shù).
(1)若函數(shù) 在區(qū)間 上是單調(diào)函數(shù),試求實(shí)數(shù) 的取值范圍;
(2)已知函數(shù) ,且 ,若函數(shù) 在區(qū)間 上恰有3個(gè)零點(diǎn),求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形 中,點(diǎn) 在線段 上, , ,沿直線 翻折成 ,使點(diǎn) 在平面 上的射影 落在直線 上.
(Ⅰ)求證:直線 平面
(Ⅱ)求二面角 的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】網(wǎng)店和實(shí)體店各有利弊,兩者的結(jié)合將在未來(lái)一段時(shí)期內(nèi),成為商業(yè)的一個(gè)主要發(fā)展方向.某品牌行車記錄儀支架銷售公司從 月起開展網(wǎng)絡(luò)銷售與實(shí)體店體驗(yàn)安裝結(jié)合的銷售模式.根據(jù)幾個(gè)月運(yùn)營(yíng)發(fā)現(xiàn),產(chǎn)品的月銷量 萬(wàn)件與投入實(shí)體店體驗(yàn)安裝的費(fèi)用 萬(wàn)元之間滿足 函數(shù)關(guān)系式.已知網(wǎng)店每月固定的各種費(fèi)用支出為 萬(wàn)元,產(chǎn)品每 萬(wàn)件進(jìn)貨價(jià)格為 萬(wàn)元,若每件產(chǎn)品的售價(jià)定為“進(jìn)貨價(jià)的 ”與“平均每件產(chǎn)品的實(shí)體店體驗(yàn)安裝費(fèi)用的一半”之和,則該公司最大月利潤(rùn)是萬(wàn)元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的不等式4ax-1<3x-4(a>0,且a≠1)對(duì)于任意的x>2恒成立,則a的取值范圍為( )
A.
B.
C.[2,+∞)
D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,且 .
(Ⅰ)設(shè) ,求 的單調(diào)區(qū)間及極值;
(Ⅱ)證明:函數(shù) 的圖象在函數(shù) 的圖象的上方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 處的切線斜率為2.
(Ⅰ)求 的單調(diào)區(qū)間和極值;
(Ⅱ)若 上無(wú)解,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別為 短軸兩個(gè)端點(diǎn)為 且四邊形 是邊長(zhǎng)為 的正方形.
(Ⅰ)求橢圓的方程;
(Ⅱ)若 分別是橢圓長(zhǎng)軸的左、右端點(diǎn),動(dòng)點(diǎn) 滿足 ,連接 ,交橢圓于點(diǎn) .證明: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠ABC=60°,ACBD相交于點(diǎn)O,AE⊥平面ABCD,CF//AE,AB=AE=2.

(1)求證:BD⊥平面ACFE;
(2)當(dāng)直線FO與平面BDE所成的角為45°時(shí),求二面角B﹣EF﹣D的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案