19.已知a>0,則“關(guān)于x的方程ax=b解集為{x0}”的充要條件的序號是③.
①存在x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax02-bx0
②存在x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax02-bx0
③任意x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax02-bx0
④任意x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax02-bx0

分析 a>0,則“關(guān)于x的方程ax=b解集為{x0}”,可得x0=$\frac{a}$.對于任意x∈R,作差$\frac{1}{2}$ax2-bx-($\frac{1}{2}$ax02-bx0)=$\frac{a}{2}$$(x-\frac{a})^{2}$,即可判斷出結(jié)論.

解答 解:a>0,則“關(guān)于x的方程ax=b解集為{x0}”,可得x0=$\frac{a}$.
對于任意x∈R,則$\frac{1}{2}$ax2-bx-($\frac{1}{2}$ax02-bx0)=$\frac{a}{2}$$(x-\frac{a})^{2}$≥0,即$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax02-bx0,
∴a>0,則“關(guān)于x的方程ax=b解集為{x0}”的充要條件的序號是③.
故答案為:③.

點評 本題考查了不等式的解法、充要條件的判定方法、作差法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.頂點在原點,焦點是(0,-2)的拋物線方程是( 。
A.x2=8yB.x2=-8yC.y2=8xD.y2=-8x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{1}{2}$x2-(2a+2)x+(2a+1)lnx.
(1)討論函數(shù)y=f(x)的單調(diào)性;
(2)對任意的a∈[$\frac{1}{2}$,2],x1,x2∈[1,2](x1≠x2),恒有|f(x1)-f(x2)|<λ|$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$|,求正實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.棱長為1的正方體ABCD-A1B1C1D1中,點P在線段BD上運(yùn)動.
(Ⅰ)求證:AC⊥平面BB1P;
(Ⅱ)若BP=1,設(shè)異面直線B1P與AC1所成的角為θ,求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知命題p:所有有理數(shù)都是實數(shù);命題q:正數(shù)的對數(shù)都是負(fù)數(shù),則下列命題中為真命題的是( 。
A.非p或qB.p且qC.非p且非qD.非p或非q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知常數(shù) a、b 滿足 a>1>b>0,若f(x)=lg(ax-bx),x∈(0,+∞)
(1)證明 y=f(x)在(0,+∞)內(nèi)是增函數(shù);
(2)若 f(x)恰在(1,+∞)內(nèi)取正值,且 f(2)=lg2,求 a、b 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=xex+c有兩個零點,則c的取值范圍是(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)y=$\sqrt{3-x}$+log2(x+1)的定義域為( 。
A.[-1,3)B.(-1,3)C.[-1,3]D.(-1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=4x2-mx+5在區(qū)間[-2,+∞)上是增函數(shù),則有(  )
A.f(1)≥25B.f(1)=25C.f(1)≤25D.f(1)>25

查看答案和解析>>

同步練習(xí)冊答案