在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c.若a=4,cosA=-
1
4
,sinB=
15
8
,則c=( 。
A、2B、4C、3D、6
考點:正弦定理
專題:解三角形
分析:利用同角三角函數(shù)的基本關系求出sinA,cosB 的值,由sinC=sin(A+B)=sinAcosB+cosAsinB 求出sinC,由正弦定理即可得解.
解答: 解:∵cosA=-
1
4
,0<A<π,
∴sinA=
1-cos2A
=
15
4

又∵sinB=
15
8
,sinA>sinB,
∴a>b,
∴A>B,
∴B∈(0,
π
2
),
∴cosB=
7
8

∴sinC=sin(A+B)=sinAcosB+cosAsinB=
3
15
16
,
∴由正弦定理可得:C=
asinC
sinA
=
3
15
16
15
4
=3.
故選:C.
點評:本題考查正弦定理,同角三角函數(shù)的基本關系,兩角和差的余弦公式的應用,求出sinC是解題的關鍵,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

不等式(3x-1)(2-x)<0的解集為( 。
A、{x|1<x<2}
B、{x|x<
1
3
或x>2}
C、{x|x<-2或x>1}
D、{x|
1
3
<x<2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C的圓心為(2,0),且圓C與直線x-
3
y+2=0相切,則圓C的方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)求過點P(2,3),且在兩坐標軸上的截距相等的直線方程;
(2)已知直線l平行于直線4x+3y-7=0,直線l與兩坐標軸圍成的三角形的周長是15,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線2x+3y+c=0在x軸上的截距比在y軸上的截距大1,則c=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=xlnx
(1)求g(x)=
f(x)+k
x
(k∈R)的單調(diào)區(qū)間;
(2)證明:當x≥1時,2x-e≤f(x)恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sin(α-
π
4
)=
1
3
,則cos(α+
π
4
)=(  )
A、-
1
3
B、
1
3
C、-
2
2
3
D、
2
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的首項大于0,公差d=1,且
1
a1a2
+
1
a2a3
=
2
3

(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足:b1=-1,b2=λ,bn+1=
1-n
n
bn+
(-1)n-1
an
,其中n≥2.
①求數(shù)列{bn}的通項bn;
②是否存在實數(shù)λ,使得數(shù)列{bn}為等比數(shù)列?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(x)是定義在R上的函數(shù),對任意的實數(shù)x,都有f(x+4)≤f(x)+4和f(x+2)≥f(x)+2,且f(3)=2,f(2015)的值是( 。
A、2016B、2015
C、2014D、2013

查看答案和解析>>

同步練習冊答案