已知函數(shù)y=a1-x(a>0,a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在直線mx+ny-1=0(m>0,n>0)上,則
1
m
+
4
n
的最小值為( 。
分析:函數(shù)y=a1-x的圖象恒過定點(diǎn)A,知A(1,1),點(diǎn)A在直線mx+ny-1=0上,得m+n=1結(jié)合m>0,n>0,用1的變換構(gòu)造出可以用基本不等式求最值的形式求最值.
解答:解:由已知定點(diǎn)A坐標(biāo)為(1,1),由點(diǎn)A在直線mx+ny-1=0上,
∴m+n=1,
又m>0,n>0,
1
m
+
4
n
=(
1
m
+
4
n
)(m+n)=5+
n
m
+
4m
n
≥5+2
4
=9

當(dāng)且僅當(dāng)
n
m
=
4m
n
即n=
2
3
,m=
1
3
時(shí)取等號.
故選B
點(diǎn)評:均值不等式是不等式問題中的確重要公式,應(yīng)用十分廣泛.在應(yīng)用過程中,學(xué)生常忽視等號成立條件,特別是對“一正、二定、三相等的條件的判斷.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=a1-x(a>0,a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在直線
x
m
+
y
n
=1
(m>0,n>0)上,則m+n的最小值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=a1-x(a>0,且a≠1)的圖象過定點(diǎn)A,若點(diǎn)A在一次函數(shù)y=mx+n的圖象上,其中m,n>0,則
1
m
+
1
n
的最小值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=a1-x(a>0,a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A與點(diǎn)B(m,0)、C(0,n)(m≠n,mn≠0)在同一直線上,則
1
m
+
1
n
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年福建省泉州五中高考數(shù)學(xué)模擬試卷2(文科)(解析版) 題型:填空題

已知函數(shù)y=a1-x(a>0,a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在直線(m>0,n>0)上,則m+n的最小值為   

查看答案和解析>>

同步練習(xí)冊答案