(1)求值sin2120°+cos180°+tan45°-cos2(-330°)+sin(-210°);
(2)化簡:
1-2sin10°cos10°
sin170°-
1-sin2170°
考點(diǎn):運(yùn)用誘導(dǎo)公式化簡求值
專題:三角函數(shù)的求值
分析:(1)原式利用誘導(dǎo)公式化簡后,再利用特殊角的三角函數(shù)值計算即可得到結(jié)果;
(2)原式利用誘導(dǎo)公式及同角三角函數(shù)間的基本關(guān)系化簡,再利用完全平方公式及二次根式的化簡公式變形,計算即可得到結(jié)果.
解答: 解:(1)原式=(
3
2
2-1+1-cos230°-sin210°=
3
4
-
3
4
+sin30°=
1
2

(2)原式=
sin210°-2sin10°cos10°+cos210°
sin10°-
1-sin210°
=
|sin10°-cos10°|
sin10°-cos10°
=
cos10°-sin10°
-(cos10°-sin10°)
=-1.
點(diǎn)評:此題考查了運(yùn)用誘導(dǎo)公式化簡求值,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=㏑(x-1)在區(qū)間(1,+∞)內(nèi)是(  )
A、單調(diào)遞增B、單調(diào)遞減
C、有極小值D、有極大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,求證下列各式:
(1)
a2+b2
2
a+b
2

(2)a+b≥
ab
+
a2+b2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,E是以AB為直徑的半圓上異于點(diǎn)A、B的點(diǎn),矩形ABCD所在的平面垂直于該半圓所在平面,且AB=2AD=2.
(Ⅰ)求證:EA⊥EC;
(Ⅱ)設(shè)平面ECD與半圓弧的另一個交點(diǎn)為F,
    ①求證:EF∥AB;
    ②若EF=1,求多面體ABCDEF的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2px(p>0),其焦點(diǎn)F到準(zhǔn)線的距離為2.過焦點(diǎn)F的直線l交拋物線C于A、B兩點(diǎn).
(1)求拋物線C的方程;
(2)求△ABO(O為原點(diǎn))面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx.
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)設(shè)A(x1,f(x1)),B(x2,f(x2)),且x1≠x2,證明:
f(x2)-f(x1)
x2-x1
<f′(
x1+x2
2
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-x,數(shù)列{an}滿足條件:a1≥1,an+1≥f′(an+1).試用數(shù)學(xué)歸納法證明:an≥2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD中,底面ABCD是菱形,AB=PA=PD=2,∠ABD=
π
3
,點(diǎn)E是AD的中點(diǎn),點(diǎn)Q是PC的中點(diǎn).
(Ⅰ)求證:EQ∥平面PAB;
(Ⅱ)求三棱錐B-PAD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x||x-1|+|x+2|=3},B={x||x-a|<1},若A∩B=B,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案