已知各項(xiàng)為正數(shù)的數(shù)列滿足(),且是的等差中項(xiàng),則數(shù)列的通項(xiàng)公式是 .
【解析】
試題分析:∵an+12-an+1an-2an2=0,∴(an+1+an)(an+1-2an)=0,∵數(shù)列{an}的各項(xiàng)均為正數(shù),∴an+1+an>0,∴an+1-2an=0,即an+1=2an,所以數(shù)列{an}是以2為公比的等比數(shù)列.∵a3+2是a2,a4的等差中項(xiàng),∴a2+a4=2a3+4,
∴2a1+8a1=8a1+4,∴a1=2,∴數(shù)列{an}的通項(xiàng)公式an=2n.
考點(diǎn):本題考查了數(shù)量的遞推關(guān)系
點(diǎn)評:數(shù)列是高中數(shù)學(xué)的重要內(nèi)容,又是學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ),所以在高考中占有重要的地位.高考對本章的考查比較全面,等差數(shù)列,等比數(shù)列的考查每年都不會遺漏,屬于中檔題
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
bn | an |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知各項(xiàng)為正數(shù)的數(shù)列滿足,且是的等差中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求使成立的正整數(shù)n的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆浙江省學(xué)軍中學(xué)高三上學(xué)期理科數(shù)學(xué)期中考試試卷 題型:解答題
已知各項(xiàng)為正數(shù)的數(shù)列的前項(xiàng)和為,且滿足,
(1)求數(shù)列的通項(xiàng)公式
(2)令,數(shù)列的前項(xiàng)和為,若對一切恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三上學(xué)期理科數(shù)學(xué)期中考試試卷 題型:解答題
已知各項(xiàng)為正數(shù)的數(shù)列的前項(xiàng)和為,且滿足,
(1)求數(shù)列的通項(xiàng)公式
(2)令,數(shù)列的前項(xiàng)和為,若對一切恒成立,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com