17.PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.我國PM2.5標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,即PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級.在35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級.在75微克/立方米以上空氣質(zhì)量為超標(biāo).某試點(diǎn)城市環(huán)保局從該市市區(qū)2016年全年每天的PM2.5監(jiān)測數(shù)據(jù)中隨機(jī)的抽取15天的數(shù)據(jù)作為樣本,監(jiān)測值如莖葉圖所示(十位為莖,個位為葉).
(1)以這15天的PM2.5日均值來估計(jì)一年的空氣質(zhì)量情況,則一年(按360天計(jì)算)中平均有多少天的空氣質(zhì)量達(dá)到一級或二級.
(2)從這15天的數(shù)據(jù)中任取三天數(shù)據(jù),記ξ表示抽到PM2.5監(jiān)測數(shù)據(jù)超標(biāo)的天數(shù),求ξ的分布列.

分析 (1)求出抽查的15中空氣質(zhì)量為一級或二級的天數(shù),根據(jù)比例得出結(jié)論;
(2)利用超幾何分布的概率公式概率,得出分布列.

解答 解:(1)由莖葉圖可知抽查的15天中,PM2.5日均值小于或等于75微克/立方米的天數(shù)為10天,
∴一年(按360天計(jì)算)中空氣質(zhì)量達(dá)到一級或二級的天數(shù)大約為360×$\frac{10}{15}$=240天.
(2)在抽取的15天中有5天的PM2.5監(jiān)測數(shù)據(jù)超標(biāo),
∴ξ的可能取值為0,1,2,3
P(ξ=0)=$\frac{{C}_{10}^{3}}{{C}_{15}^{3}}$=$\frac{24}{91}$,P(ξ=1)=$\frac{{{C}_{5}^{1}C}_{10}^{2}}{{C}_{15}^{3}}$=$\frac{45}{91}$,P(ξ=2)=$\frac{{{C}_{5}^{2}C}_{10}^{1}}{{C}_{15}^{3}}$=$\frac{20}{91}$,P(ξ=3)=$\frac{{C}_{5}^{3}}{{C}_{15}^{3}}$=$\frac{2}{91}$,
∴ξ的分布列為:

ξ 0 1 2 3
 P $\frac{24}{91}$ $\frac{45}{91}$ $\frac{20}{91}$$\frac{2}{91}$

點(diǎn)評 本題考查了莖葉圖,離散型隨機(jī)變量的分布列,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.盒中有4個白球,5個紅球,從中任取3個球,則抽出2個白球1個紅球的概率是( 。
A.$\frac{37}{42}$B.$\frac{17}{42}$C.$\frac{5}{14}$D.$\frac{17}{21}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.方程y=ax+b和y=bx+a表示的直線可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=|x+a|+|x-2|
(1)當(dāng)a=-3時,求不等式f(x)≥3的解集;
(2)若不等式f(x)<2的解集為空集,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在等差數(shù)列{an}中,給出以下結(jié)論.
①恒有a2+a8=a10
②數(shù)列{an}的前n項(xiàng)和公式不可能是Sn=n.
③若a1=12,S6=S14,則必有a9=0.
其中正確命題的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.?dāng)?shù)列0,$\frac{2}{3}$,$\frac{4}{5}$,$\frac{6}{7}$…的一個通項(xiàng)公式為(  )
A.an=$\frac{2(n-1)}{2n-1}$B.an=$\frac{n-1}{2n+1}$C.an=$\frac{n-1}{n+1}$D.an=$\frac{2n}{3n+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}是等比數(shù)列,其前n項(xiàng)和是Sn,a1+2a2=0,${S_4}-{S_2}=\frac{1}{8}$.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式.
(Ⅱ)求滿足${a_n}≥\frac{1}{16}$的n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知兩組相關(guān)數(shù)據(jù)如表,其線性回歸方程為$\stackrel{∧}{y}$=x+$\frac{6}{5}$,則表中缺失的數(shù)據(jù)m=11.
 x 5 7 9 11 13
 y 6 8 m 12 14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知f(x)為定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=4x+x-$\frac{1}{x}$.
(1)求f(-1)的值;
(2)求f(x)的解析式;
(3)若函數(shù)g(x)=f(x)+a在區(qū)間(1,2)上有零點(diǎn),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案