已知命題p:函數(shù)y=2-ax+1恒過(1,2)點;命題q:若函數(shù)f(x-1)為偶函數(shù),則f(x)的圖象關(guān)于直線x=1對稱,則下列命題為真命題的是( )
A.p∧q
B.¬p∧¬q
C.¬p∧q
D.p∧¬q
【答案】分析:復合命題的真假判定,解決的辦法是先判斷組成復合命題的簡單命題的真假,再根據(jù)真值表進行判斷.
解答:解:函數(shù)y=2-ax+1的圖象可看作把y=ax的圖象先沿軸反折,再左移1各單位,最后向上平移2各單位得到,而y=ax的圖象恒過(0,1),所以函數(shù)y=2-ax+1恒過(-1,1)點,所以命題
p假,則¬p真.
函數(shù)f(x-1)為偶函數(shù),則其對稱軸為x=0,而函數(shù)f(x)的圖象是把y=f(x-1)向左平移了1各單位,所以f(x)的圖象關(guān)于直線x=-1對稱,所以命題q假,則命題¬q真.
綜上可知,命題¬p∧¬q為真命題.
故選B
點評:復合命題的真值表:
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知命題p:函數(shù)y=lgx2的定義域是R,命題q:函數(shù)y=(
13
)
x
的值域是正實數(shù)集,給出命題:①p或q;②p且q;③非p;④非q.其中真命題個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:函數(shù)y=x2+2(a2-a)x+a4-2a3在[-2,+∞)上單調(diào)遞增.q:關(guān)于x的不等式ax2-ax+1>0解集為R.若p∧q假,p∨q真,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題P:函數(shù)y=loga(1-2x)在定義域上單調(diào)遞增,命題Q:不等式(a-2)x2+2(a-2)x-4<0對任意實數(shù)x恒成立,若P∨Q是真命題,P∧Q是假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:函數(shù)y=log 0.5(x2+2x+a)的值域為R,命題q:函數(shù)y=(x-a)2在(2,+∞)上是增函數(shù).若p或q為真命題,p且q為假命題,則實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題P:函數(shù)y=lg(ax2-x+
a16
)定義域為R; 命題Q:函數(shù)y=(5-2a)x為增函數(shù);若“p∨q”為真命題,“p∧q:”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案