設(shè)數(shù)列{an}是等差數(shù)列,且a2=-8,a15=5,Sn是數(shù)列{an}的前n項和,則( 。
A、S9<S10B、S9=S10C、S11<S10D、S11=S10
分析:利用等差數(shù)列的通項公式,結(jié)合已知條件列出關(guān)于a1,d的方程組,解出a1,d,然后利用前n項和公式求解即可.
解答:解:設(shè){an}的公差為d,首項為a1,由題意得
a1+d=-8
a1+14d=5
,解得
a1=-9
d=1
,
∴s9=9×(-9)+
9×8
2
×1
=-45,s10=10×(-9)+
10×9
2
×1=-45,s11=11×(-9)+
11×10
2
×1=-44,
∴S9=S10,s11>s10,
故選B.
點評:本題考查了等差數(shù)列的通項公式、前n項和公式,熟練應(yīng)用公式是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是各項都為正數(shù)的等比數(shù)列,且a1=b1=1,b1+b2=a2,b3是a1與a4的等差中項.
(I)求數(shù)列{an},{bn}的通項公式;
(II)求數(shù)列{
anbn
}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•棗莊一模)設(shè)數(shù)列{an}滿足a1=1,a2=2,對任意的n∈N*,an+2是an+1與an的等差中項.
(1)設(shè)bn=an+1-an,證明數(shù)列{bn}是等比數(shù)列,并求出其通項公式;
(2)寫出數(shù)列{an}的通項公式(不要求計算過程),令cn=
3
2
n(
5
3
-an)
,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都市望子成龍學(xué)校高二(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是各項都為正數(shù)的等比數(shù)列,且a1=b1=1,b1+b2=a2,b3是a1與a4的等差中項.
(I)求數(shù)列{an},{bn}的通項公式;
(II)求數(shù)列{}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省臨沂市重點高中高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是各項都為正數(shù)的等比數(shù)列,且a1=b1=1,b1+b2=a2,b3是a1與a4的等差中項.
(I)求數(shù)列{an},{bn}的通項公式;
(II)求數(shù)列{}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都市望子成龍學(xué)校高二(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是各項都為正數(shù)的等比數(shù)列,且a1=b1=1,b1+b2=a2,b3是a1與a4的等差中項.
(I)求數(shù)列{an},{bn}的通項公式;
(II)求數(shù)列{}的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案