已知函數(shù)f(x)=b•ax(其中a,b為常量,a>0且a≠1)的圖象經(jīng)過點A(1,6),B(3,24)
(1)求a、b的值
(2)若函數(shù)g(x)=數(shù)學公式在x∈(-∞,1]時有意義,求實數(shù)m的取值范圍.

解:(1)把A(1,6),B(3,24)代入f(x)=b•ax,得
結(jié)合a>0且a≠1,解得:,∴f(x)=3•2x
(2)若函數(shù)g(x)== 在x∈(-∞,1]時有意義,
則1+2x-m•3x≥0 在x∈(-∞,1]時恒成立,即當x≤1時,m≤=+ 恒成立.
由于 + 在(-∞,1]上是減函數(shù),故 + 的最小值為 =1,
故 m≤1,故實數(shù)m的取值范圍為(-∞,1].
分析:(1)根據(jù)函數(shù)f(x)=b•ax(其中a,b為常量,且a>0,a≠1)的圖象經(jīng)過點A(1,6),B(3,24),把A(1,6),B(3,24)代入f(x)=b•ax,解此方程組,
即可求得a,b,的值,從而求得f(x).
(2)由題意可得1+2x-m•3x≥0 在x∈(-∞,1]時恒成立,即當x≤1時,m≤=+ 恒成立.求得 + 的最小值,即可得到實數(shù)m的取值范圍.
點評:本題主要考查用待定系數(shù)法求函數(shù)的解析式,和利用指數(shù)函數(shù)的單調(diào)性求函數(shù)的最值,體現(xiàn)了轉(zhuǎn)化的思想,同時考查學生靈活應用知識分析解決問題的能力,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=b•ax(其中a,b為常量,且a>0,a≠1)的圖象經(jīng)過點A(1,6),B(3,24).
(1)求f(x);
(2)若不等式(
1
a
x+(
1
b
x-m≥0在x∈(-∞,1]時恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=b•ax(a>0且a≠1),且f(k)=8f(k-3)(k≥4,k∈N*).
(1)若b=8,求f(1)+f(2)+…+f(n)(n∈N*);
(2)若f(1)、16、128依次是某等差數(shù)列的第1項,第k-3項,第k項,試問:是否存在正整數(shù)n,使得f(n)=2(n2-100)成立,若存在,請求出所有的n及b的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=b•ax(其中a,b為常量,且a>0,a≠1)的圖象經(jīng)過A(1,
1
6
),B(3,
1
24
)

(1)試確定f(x)的解析式;
(2)若不等式(
1
a
)x+(
1
b
)x
≤m在x∈(-∞,1]時恒成立,求實數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=b(x+1)lnx-x+1,斜率為l的直線與函數(shù)f(x)的圖象相切于(1,0)點.
(Ⅰ)求h(x)=f(x)-xlnx的單調(diào)區(qū)間;
(Ⅱ)當實數(shù)0<a<1時,討論g(x)=f(x)-(a+x)lnx+
1
2
a
x
2
 
的極值點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=b•ax(其中a,b為常量且a>0,a≠1)的圖象經(jīng)過點A(1,6),B(3,24),
(1)試確定f(x);
(2)若不等式(
1
a
) x+(
1
b
) x-m≤0在x∈[0,+∞)上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案