精英家教網 > 高中數學 > 題目詳情
設函數f(x)對任意x1,x2∈[0,
1
2
]都有f(x1+x2)=f(x1)•f(x2),已知f(1)=2,求f(
1
2
),f(
1
4
).
由f(x1+x2)=f(x1)•f(x2),x1,x2∈[0,
1
2
]
∴f(x)=f(
x
2
)•f(
x
2
)≥0,x∈[0,1]
∴f(1)=f(
1
2
+
1
2
)=f(
1
2
)•f(
1
2
)=f2
1
2
)=2,
∴f(
1
2
)=
2

同理可得f(
1
2
)=f2
1
4
).
∴f(
1
4
)=
42
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)對任意x,y∈R都有f(x+y)=f(x)+f(y),且當x>0時,f(x)<0,f(1)=-2
(1)證明f(x)為奇函數.
(2)證明f(x)在R上是減函數.
(3)若f(2x+5)+f(6-7x)>4,求x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)對任意實數x,y,都有f(x+y)=f(x)+f(y),若x>0時,f(x)<0,且f(1)=2,
①求f(x)在[-3,3]上的最大值和最小值.
②解不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)對任意x∈R,都有f(x+3)=-
1
f(x)
,且當x∈(-3,-2)時,f(x)=5x,則f(201.2)=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)對任意x,y∈R,都有f(x+y)=f(x)+f(y),當x≠0時,xf(x)<0,f(1)=-2
(1)求證:f(x)是奇函數;
(2)試問:在-n≤x≤n時(n∈N*),f(x)是否有最大值?如果有,求出最大值,如果沒有,說明理由.
(3)解關于x的不等式
1
2
f(bx2)-f(x)≥
1
2
f(b2x)-f(b),(b>0)

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)對任意實數x,y都有f(x+y)=f(x)+f(y),且x>0時,f(x)<0,f(1)=-2.
(1)求證f(x)是奇函數;
(2)求f(x)在[-3,3]上的最大值和最小值.

查看答案和解析>>

同步練習冊答案