已知數(shù)列{an}滿足a1=1,an+1=
an
3an+1
bn=
1
an
,則bn=
3n-2
3n-2
分析:an+1=
an
3an+1
變形可得
1
an+1
=
3an+1
an
=
1
an
+3
,從而得到{bn}是等差數(shù)列,根據(jù)等差數(shù)列的通項(xiàng)公式即可求得.
解答:解:∵an+1=
an
3an+1

1
an+1
=
3an+1
an
=
1
an
+3
bn=
1
an

∴bn+1-bn=3,b1=
1
a1
=1

∴{bn}是首項(xiàng)為1,公差為3的等比數(shù)列
則bn=1+3(n-1)=3n-2
故答案為:3n-2.
點(diǎn)評:本題主要考查了數(shù)列的定義及其簡單表示,同時(shí)考查了構(gòu)造新數(shù)列求通項(xiàng)公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn;
(3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項(xiàng)公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:對于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an;
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習(xí)冊答案