已知橢圓的左焦點(diǎn)為F,O為坐標(biāo)原點(diǎn).

(Ⅰ)求過(guò)點(diǎn)O、F,并且與直線(xiàn)x=-2相切的圓的方程;

(Ⅱ)設(shè)過(guò)點(diǎn)F的直線(xiàn)交橢圓于A、B兩點(diǎn),并且線(xiàn)段AB的中點(diǎn)在直線(xiàn)x+y=0上,求直線(xiàn)AB的方程.

答案:
解析:

  解:(Ⅰ)

  圓過(guò)點(diǎn)O、F,

  圓心M在直線(xiàn)上.

  設(shè)則圓半徑

  

  由

  解得

  所求圓的方程為

  (Ⅱ)設(shè)直線(xiàn)AB的方程為

  代入整理得

  直線(xiàn)AB過(guò)橢圓的左焦點(diǎn)F,方程有兩個(gè)不等實(shí)根,

  記中點(diǎn)

  則

  

  線(xiàn)段AB的中點(diǎn)N在直線(xiàn)上,

  

  ,或

  當(dāng)直線(xiàn)AB與軸垂直時(shí),線(xiàn)段AB的中點(diǎn)F不在直線(xiàn)上.

  直線(xiàn)AB的方程是


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿(mǎn)分12分)  已知橢圓的左焦點(diǎn)為F,O為坐標(biāo)原點(diǎn)。

       (I)求過(guò)點(diǎn)O、F,并且與橢圓的左準(zhǔn)線(xiàn)相切的圓的方程;

       (II)設(shè)過(guò)點(diǎn)F且不與坐標(biāo)軸垂直的直線(xiàn)交橢圓于A、B兩點(diǎn),線(xiàn)段AB的垂直平分線(xiàn)與軸交于點(diǎn)G,求點(diǎn)G橫坐標(biāo)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2006年福建省高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知橢圓的左焦點(diǎn)為F,O為坐標(biāo)原點(diǎn).
(I)求過(guò)點(diǎn)O、F,并且與橢圓的左準(zhǔn)線(xiàn)l相切的圓的方程;
(II)設(shè)過(guò)點(diǎn)F的直線(xiàn)交橢圓于A、B兩點(diǎn),并且線(xiàn)段AB的中點(diǎn)在直線(xiàn)x+y=0上,求直線(xiàn)AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年甘肅省高三第三次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知橢圓的左焦點(diǎn)為F,過(guò)點(diǎn)F的直線(xiàn)交橢圓于A、B兩點(diǎn),線(xiàn)段AB的中點(diǎn)為G,AB的中垂線(xiàn)與x軸和y軸分別交于D、E兩點(diǎn).

(Ⅰ)若點(diǎn)G的橫坐標(biāo)為,求直線(xiàn)AB的斜率;

(Ⅱ)記△GFD的面積為S1,△OED(O為原點(diǎn))的面積為S2

試問(wèn):是否存在直線(xiàn)AB,使得S1=S2?說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江蘇南通市通州區(qū)2010高三查漏補(bǔ)缺專(zhuān)項(xiàng)練習(xí)數(shù)學(xué)理 題型:解答題

(本小題滿(mǎn)分15分)已知橢圓的左焦點(diǎn)為F,左右頂點(diǎn)分別為A、C,

上頂點(diǎn)為B,過(guò)F,B,C三點(diǎn)作,其中圓心P的坐標(biāo)為

(1) 若橢圓的離心率,求的方程;

(2)若的圓心在直線(xiàn)上,求橢圓的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年黑龍江省高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:填空題

已知橢圓的左焦點(diǎn)為F,右頂點(diǎn)為A,點(diǎn)B在橢圓上,且軸,直線(xiàn)AB交軸于點(diǎn)P。若,則橢圓的離心率為     

 

查看答案和解析>>

同步練習(xí)冊(cè)答案