已知函數(shù)恒成立,則k的取值范圍為        。

試題分析:因為所以易知上單調(diào)遞增,又,
所以,所以,因為,所以函數(shù)f(x)=ex+x2-x在[-1,1]內(nèi)的最大值是e,最小值是1.所以要滿足恒成立,只需滿足,即。
點評:本題考查滿足條件的實數(shù)的取值范圍的求法,解題的關鍵是要分析出。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)f(x)=|lgx|.若0<a<b,且f(a)=f(b),則a+2b的取值范圍是         

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù) 
(1)設處取得極值,且,求的值,并說明是極大值點還是極小值點;
(2)求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)的定義域為         

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

定義在上的函數(shù),如果存在函數(shù),使得對一切實數(shù)都成立,則稱是函數(shù)的一個“親密函數(shù)”,現(xiàn)有如下的命題:
(1)對于給定的函數(shù),其“親密函數(shù)”有可能不存在,也可能有無數(shù)個;
(2)的一個“親密函數(shù)”;
(3)定義域與值域都是的函數(shù)不存在“親密函數(shù)”。
其中正確的命題是(  )
A.(1)B.(2)C.(1)(2)D.(1)(3)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分13分)已知函數(shù)
(1) 求函數(shù)的極值;
(2)求證:當時,
(3)如果,且,求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù),上的最大值是最小值的2倍,
則m=       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知).
⑴求的單調(diào)區(qū)間;
⑵若內(nèi)有且只有一個極值點, 求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若函數(shù)在區(qū)間上是增函數(shù),則有(    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案