如圖所示,在正三棱柱中,底面邊長(zhǎng)為,側(cè)棱長(zhǎng)為是棱的中點(diǎn).

 

 
(Ⅰ)求證:平面;

(Ⅱ)求二面角的大。

(Ⅲ)求點(diǎn)到平面的距離.

 

 

 

 

【答案】

  解:(Ⅰ) 連結(jié)交于,則的中點(diǎn),

的中點(diǎn),

的中位線,

//. 又平面,平面

//平面………    ……4分

(Ⅱ)過(guò),由正三棱柱的性質(zhì)可知,

平面,連結(jié),在正中,

在直角三角形中,

由三垂線定理的逆定理可得.則為二面角的平面角,又得,

.故所求二面角的大小為.………………8分

解法(2)(向量法)

建立如圖所示空間直角坐標(biāo)系,則

.

設(shè)是平面的一個(gè)法向量,則可得

,所以可得

又平面的一個(gè)法向量設(shè)

又知二面角是銳角,所以二面角 的大小是………………………………………        ……………8分

(Ⅲ)設(shè)點(diǎn)到平面的距離;因,所以,故,而…………       ……10分

……   …12分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在正三棱柱ABC-A1B1C1中,底面邊長(zhǎng)是2,D是棱BC的中點(diǎn),點(diǎn)M 是棱BB1的中點(diǎn),又CM⊥AC1,
(Ⅰ)求證:A1B∥平面AC1D;
(Ⅱ)求二面角C-AC1-D的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在正三棱柱ABC-A1B1C1中,底面邊長(zhǎng)為a,側(cè)棱長(zhǎng)為
2
2
a
,D是棱A1C1的中點(diǎn).
(Ⅰ)求證:BC1∥平面AB1D;
(Ⅱ)求二面角A1-AB1-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在正三棱柱ABC-A1B1C1中,所有棱長(zhǎng)均為1,求點(diǎn)B1到平面ABC1的距離.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在正三棱柱ABC-A1B1C1中,底面邊長(zhǎng)是2,D是棱BC的中點(diǎn),點(diǎn)M在棱BB1上,且BM=
13
B1M,又CM⊥AC1
(Ⅰ)求證:A1B∥平面AC1D;
(Ⅱ)求三棱錐B1-ADC1體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•日照一模)如圖所示,在正三棱柱ABC-A1B1C1中,底面邊長(zhǎng)和側(cè)棱長(zhǎng)都是2,D是側(cè)棱CC1上任意一點(diǎn),E是A1B1的中點(diǎn).
(I)求證:A1B1∥平面ABD;
(II)求證:AB⊥CE;
(III)求三棱錐C-ABE的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案