【題目】已知拋物線的焦點(diǎn)F(1,0),O為坐標(biāo)原點(diǎn),AB是拋物線C上異于 O的兩點(diǎn).

(1)求拋物線C的方程;

(2)若直線AB過點(diǎn)(8,0),求證:直線OAOB的斜率之積為定值

【答案】(1);(2)詳見解析.

【解析】

1)根據(jù)拋物線方程和焦點(diǎn)坐標(biāo)得,從而可得拋物線方程;(2)當(dāng)斜率不存在時(shí),求出交點(diǎn)坐標(biāo),從而得到;當(dāng)斜率存在時(shí),聯(lián)立直線方程與拋物線方程,可得韋達(dá)定理的形式,列出,代入韋達(dá)定理,整理可得,從而可證得結(jié)論.

(1)拋物線的焦點(diǎn)坐標(biāo)為

拋物線的方程為

(2)證明:①當(dāng)直線的斜率不存在時(shí),即

可得直線與拋物線交點(diǎn)坐標(biāo)為:

②當(dāng)直線的斜率存在時(shí),設(shè)方程為,

聯(lián)立方程組,消去得:

則:,

綜合①②可知,直線,的斜率之積為定值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)的直角坐標(biāo)為,直線與曲線的交點(diǎn)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為定義域R上的奇函數(shù),且在R上是單調(diào)遞增函數(shù),函數(shù),數(shù)列為等差數(shù)列,且公差不為0,若,則( )

A. 45B. 15C. 10D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市隨機(jī)選取位顧客,記錄了他們購(gòu)買甲、乙、丙、丁四種商品的情況,整理成如下統(tǒng)計(jì)表,其中“√”表示購(gòu)買,“×”表示未購(gòu)買.

×

×

×

×

×

×

85

×

×

×

×

×

×

Ⅰ)估計(jì)顧客同時(shí)購(gòu)買乙和丙的概率;

Ⅱ)估計(jì)顧客在甲、乙、丙、丁中同時(shí)購(gòu)買中商品的概率;

Ⅲ)如果顧客購(gòu)買了甲,則該顧客同時(shí)購(gòu)買乙、丙、丁中那種商品的可能性最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中,角所對(duì)的邊分別為,滿足

1)求的大;

2)如圖,,在直線的右側(cè)取點(diǎn),使得.當(dāng)角為何值時(shí),四邊形面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點(diǎn)與雙曲線有且只有一個(gè)公共點(diǎn)的直線共__________條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地?cái)M規(guī)劃種植一批芍藥,為了美觀,將種植區(qū)域(區(qū)域I)設(shè)計(jì)成半徑為1km的扇形,中心角).為方便觀賞,增加收入,在種植區(qū)域外圍規(guī)劃觀賞區(qū)(區(qū)域II)和休閑區(qū)(區(qū)域III),并將外圍區(qū)域按如圖所示的方案擴(kuò)建成正方形,其中點(diǎn)分別在邊上.已知種植區(qū)、觀賞區(qū)和休閑區(qū)每平方千米的年收入分別是10萬元、20萬元、20萬元.

(1)要使觀賞區(qū)的年收入不低于5萬元,求的最大值;

(2)試問:當(dāng)為多少時(shí),年總收入最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐的底面是等邊三角形,點(diǎn)在平面上的射影在內(nèi)(不包括邊界),.與底面所成角為,;二面角,的平面角為,則,,,之間的大小關(guān)系等確定的是()

A. B.

C. 是最小角,是最大角D. 只能確定,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

() 若函數(shù)有零點(diǎn), 求實(shí)數(shù)的取值范圍;

(Ⅱ) 證明: 當(dāng)時(shí), .

查看答案和解析>>

同步練習(xí)冊(cè)答案