(本小題共13分)
已知函數(shù)
(
).
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)函數(shù)
的圖像在
處的切線的斜率為
若函數(shù)
,在區(qū)間(1,3)上不是單調(diào)函數(shù),求
的取值范圍。
(1)當(dāng)
f(x)的單調(diào)遞增區(qū)間為(0,
),單調(diào)遞減區(qū)間為(
,
當(dāng)
f(x)的單調(diào)遞增區(qū)間為(
,
,單調(diào)遞減區(qū)間為(0,
)
(2)
試題分析:解:(I)
……2分
當(dāng)
即
f(x)的單調(diào)遞增區(qū)間為(0,
),單調(diào)遞減區(qū)間為(
,
………4分
當(dāng)
,
即
f(x)的單調(diào)遞增區(qū)間為(
,
,單調(diào)遞減區(qū)間為(0,
) ……6分
(II)
得
……8分
+3
……9分
………10分
……11分
……12分
即:
……13分
點評:解決該試題關(guān)鍵是利用導(dǎo)數(shù)的符號,求解函數(shù)單調(diào)性,并能結(jié)合函數(shù)的單調(diào)性,得到導(dǎo)數(shù)是恒大于等于零或者是恒小于等于零來得到參數(shù)的范圍。屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
.
(1)
時,求
的極值;
(2)當(dāng)
時,討論
的單調(diào)性;
(3)證明:
(
,
,其中無理數(shù)
)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知函數(shù)
(
)滿足
,且
的導(dǎo)函數(shù)
<
,則
<
的解集為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
證明函數(shù)f(x)=x+
在(0,1)上是減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
函數(shù)
的最大值是
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知函數(shù)
,且
.則( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(8分)已知函數(shù)
(
x∈R).
(1)若
,求
的值;
(2)若
,求
的值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(12分)已知
滿足
,求函數(shù)
的最大值和最小值
查看答案和解析>>