分析:(1)對任意x1,x2∈[-1,1]都有f(x1)≥g(x2),等價于f(x)min≥g(x)max,進而轉化為函數的最值問題;
(2)存在x1,x2∈[-1,1],使得f(x1)<g(x2),等價于f(x)min<g(x)max,進而轉化為函數的最值問題.
解答:解:(1)f′(x)=3x
2-3=3(x+1)(x-1),
當x∈[-1,1]時,f′(x)≤0,所以f(x)在[-1,1]上單調遞減,f(x)
min=f(1)=k-2;
g′(x)=
=
,
當x∈[-1,1]時,g′(x)≥0,所以g(x)在[-1,1]上單調遞增,g(x)
max=g(1)=
.
對任意x
1,x
2∈[-1,1]都有f(x
1)≥g(x
2),等價于f(x)
min≥g(x)
max,
即k-2≥
,解得k≥3.
所以k的取值范圍是[3,+∞).
(2)由(1)知:f(x)在[-1,1]上單調遞減,f(x)
min=f(1)=k-2;
g(x)在[-1,1]上單調遞增,g(x)
max=g(1)=
.
存在x
1,x
2∈[-1,1],使得f(x
1)<g(x
2),等價于f(x)
min<g(x)
max,
即k-2<
,解得0<k<3.
所以k的取值范圍是(0,3).
點評:本題為不等式恒成立問題,解決的基本思路是轉化為函數最值問題處理,從而可用導數解決.本題注意分析兩問間的“否定”關系.