7.求經(jīng)過直線l1:3x+2y-1=0和l2:5x+2y+1=0的交點,且在兩坐標軸上的截距互為相反數(shù)的直線l的方程.

分析 先聯(lián)立已知的兩條直線方程求出交點的坐標,由直線l與兩坐標軸的截距互為相反數(shù),分兩種情況考慮:
①當直線l與坐標軸的截距不為0時,設(shè)出直線l的截距式方程x-y=a,把交點坐標代入即可求出a的值,得到直線l的方程;
②當直線l與坐標軸的截距為0時,設(shè)直線l的方程為y=kx,把交點坐標代入即可求出k的值,得到直線l的方程.

解答 解:聯(lián)立已知的兩直線方程得:$\left\{\begin{array}{l}{3x+2y-1=0}\\{5x+2y+1=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$,
所以兩直線的交點坐標為(-1,2),
因為直線l在兩坐標軸上的截距互為相反數(shù),
①當直線l與坐標軸的截距不為0時,可設(shè)直線l的方程為:x-y=a,
直線l過兩直線的交點,所以把(-1,2)代入直線l得:a=-3,則直線l的方程為x-y=-3即x-y+3=0;
②當直線l與兩坐標的截距等于0時,設(shè)直線l的方程為y=kx,
直線l過兩直線的交點,所以把(-1,2)代入直線l得:k=-2,所以直線l的方程為y=-2x即2x+y=0.
綜上①②,直線l的方程為x-y+3=0或2x+y=0.

點評 此題考查學(xué)生會根據(jù)兩直線的方程求兩直線的交點坐標,考查了分類討論的數(shù)學(xué)思想,是一道綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知圓心坐標為$(1,\sqrt{3})$的圓M與y軸及直線y=$\frac{{\sqrt{3}}}{3}$x相切于A、B兩點,另一圓N1與圓M外切(圓N1在圓M的斜上方),且與y軸及直線y=$\frac{{\sqrt{3}}}{3}$x分別切于C、D兩點.(如圖)
(1)求圓N1的方程.
(2)求線段AC的長.
(3)仿N1作一系列圓Nk(k≥2)圓Nk與圓Nk-1外切,(圓Nk在圓Nk-1的斜上方)與y軸及y=$\frac{{\sqrt{3}}}{3}$x相切,圓Nk的圓心坐標為(xk,yk),求數(shù)列{xk}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.某工廠生產(chǎn)甲、乙、丙、丁4類產(chǎn)品共計1200件,已知甲、乙、丙、丁4類產(chǎn)品的數(shù)量之比為1:2:4:5,現(xiàn)要用分層抽樣在方法從中抽取60件,則乙類產(chǎn)品抽取的件數(shù)為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.2013年4月初眉山市“體彩杯”中小學(xué)生田徑運動會圓滿落幕,市文體局舉行表彰大會.某校有男運動員6名,女運動員4名,其中男女隊長各1人,從中選5人參加表彰會,下列情形各有多少種選派方法(結(jié)果用數(shù)字作答).
(1)男3名,女2名                 
(2)隊長至少有1人參加
(3)至少1名女運動員              
(4)既要有隊長,又要有女運動員.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求下列各式的最值:
(1)已知x>y>0,且xy=1,求$\frac{{x}^{2}+{y}^{2}}{x-y}$的最小值及此時x,y的值.
(2)設(shè)a,b∈R,且a+b=5,求2a+2b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.從某學(xué)校的800名男生中隨機抽取50名測量身高,被測學(xué)生身高全部介于155cm和195cm之間,將測量結(jié)果按如下方式分成八組:第一組[155,160),第二組[160,165),…,第八組[190,195],下圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組的人數(shù)為4人.
(1)求第七組的頻率,并估計該校的800名男生的身高的中位數(shù)以及身高在180cm以上(含180cm)的人數(shù);
(2)若從身高屬于第六組和第八組的男生中隨機抽取兩名男生,求他們的身高之差不超過5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)f(x)=x3+log2(x+$\sqrt{{x}^{2}+1}$),則對任意實數(shù)a,b“a+b≥0”是“f(a)+f(b)≥0”的充分必要條件.
(“充分”,“必要”,“充分不必要”,“必要不充分”,“充分必要”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},則集合{2,7,8}是( 。
A.M∪NB.M∩NC.IM∪∁IND.IM∩∁IN

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知角θ的終邊經(jīng)過點P(x,3)(x<0)且cosθ=$\frac{\sqrt{10}}{10}$x,則x等于( 。
A.-1B.-$\frac{1}{3}$C.-3D.-$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

同步練習(xí)冊答案