設數(shù)列{an}的前n項的和為Sn,已知,設若對一切n∈N*均有,則實數(shù)m的取值范圍為   
【答案】分析:依題意,可求得an與bn,從而可求得bk=∈[,),利用[,)⊆(,m2-6m+)即可求得實數(shù)m的取值范圍.
解答:解:∵++…+=,①
∴當n≥2時,
++…+=,②
∴①-②得:=-=,
∴Sn=n(n+1)(n≥2).
當n=1時,==,
∴a1=2,符合Sn=n(n+1)(n≥2).
∴Sn=n(n+1).
∴可求得an=2n.
∴bn===
=,b1=,
∴{bn}是以為首項,為公比的等比數(shù)列.
bk==∈[,),
bk∈(,m2-6m+),
∴[,)⊆(,m2-6m+),
,
解得:m<0或m≥5.
故答案為:m<0或m≥5.
點評:本題考查求數(shù)列的通項與數(shù)列求和,突出考查集合間的包含關系與解不等式組的能力,綜合性強,難度大,屬于難題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項的和為Sn,且Sn=3n+1.
(1)求數(shù)列{an}的通項公式;
(2)設bn=an(2n-1),求數(shù)列{bn}的前n項的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列an的前n項的和為Sn,a1=
3
2
Sn=2an+1-3

(1)求a2,a3;
(2)求數(shù)列an的通項公式;
(3)設bn=(2log
3
2
an+1)•an
,求數(shù)列bn的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關系式;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區(qū)域為Dn,若Dn內的整點(整點即橫坐標和縱坐標均為整數(shù)的點)個數(shù)為an(n∈N*
(1)寫出an+1與an的關系(只需給出結果,不需要過程),
(2)求數(shù)列{an}的通項公式;
(3)設數(shù)列an的前n項和為SnTn=
Sn
5•2n
,若對一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•鄭州一模)設數(shù)列{an}的前n項和Sn=2n-1,則
S4
a3
的值為( 。

查看答案和解析>>

同步練習冊答案