設(shè)不等式組所表示的平面區(qū)域?yàn)镈n,記Dn內(nèi) 的整點(diǎn)個(gè)數(shù)為an(n∈N*)(整點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn)).
(1) 求證:數(shù)列{an}的通項(xiàng)公式是an=3n(n∈N*).
(2) 記數(shù)列{an}的前n項(xiàng)和為Sn,且Tn=.若對于一切的正整數(shù)n,總有Tn≤m,求實(shí)數(shù)m的取值范圍.
(1)詳見試題解析;(2).
解析試題分析:(1)首先由已知,得
,
,或
,
內(nèi)的整點(diǎn)在直線
和
上.記直線
為
,
與直線
和
的交點(diǎn)的縱坐標(biāo)分別為
,則可求得
的值,最后可得
的表達(dá)式;(2)由(1)先求出
及
的表達(dá)式,由已知對一切的正整數(shù)
,
恒成立,等價(jià)于
,可以利用數(shù)列
相鄰兩項(xiàng)的差,解
,得到數(shù)列
的最大項(xiàng),從而可得實(shí)數(shù)
的取值范圍.
試題解析:(1)證明:由,得
,
,或
,
內(nèi)的整點(diǎn)在直線
和
上.記直線
為
,
與直線
和
的交點(diǎn)的縱坐標(biāo)分別為
,則
,
.
(2),
,
,∴當(dāng)
時(shí),
,且
,于是
,
是數(shù)列
中的最大項(xiàng),故
.
考點(diǎn):1.線性規(guī)劃整點(diǎn)問題;2.?dāng)?shù)列通項(xiàng)公式及前項(xiàng)和的求法;3.恒成立不等式中的參數(shù)取值范圍問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}的前三項(xiàng)分別為a1=5,a2=6,a3=8,且數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+m=(S2n+S2m)-(n-m)2,其中m,n為任意正整數(shù).
(1)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn;
(2)求滿足-
an+33=k2的所有正整數(shù)k,n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列{an} 的前n項(xiàng)和為Sn,滿足2Sn=an+1﹣2n+1+1,n∈N*,且a1,a2+5,a3成等差數(shù)列.
(1)求a1,a2,a3的值;
(2)求證:數(shù)列{an+2n}是等比數(shù)列;
(3)證明:對一切正整數(shù)n,有+
+…+
<
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列,公差
,前n項(xiàng)和為
,
,且滿足
成等比數(shù)列.
(I)求的通項(xiàng)公式;
(II)設(shè),求數(shù)列
的前
項(xiàng)和
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
2013年我國汽車擁有量已超過2億(目前只有中國和美國超過2億),為了控制汽車尾氣對環(huán)境的污染,國家鼓勵(lì)和補(bǔ)貼購買小排量汽車的消費(fèi)者,同時(shí)在部分地區(qū)采取對新車限量上號.某市采取對新車限量上號政策,已知2013年年初汽車擁有量為(
=100萬輛),第
年(2013年為第1年,2014年為第2年,依次類推)年初的擁有量記為
,該年的增長量
和
與
的乘積成正比,比例系數(shù)為
其中
=200萬.
(1)證明:;
(2)用表示
;并說明該市汽車總擁有量是否能控制在200萬輛內(nèi).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)設(shè)函數(shù)的圖像的頂點(diǎn)的縱坐標(biāo)構(gòu)成數(shù)列
,求證:
為等差數(shù)列;
(Ⅱ)設(shè)函數(shù)的圖像的頂點(diǎn)到
軸的距離構(gòu)成數(shù)列
,求
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的首項(xiàng)
其中
,
令集合
.
(Ⅰ)若,寫出集合
中的所有的元素;
(Ⅱ)若,且數(shù)列
中恰好存在連續(xù)的7項(xiàng)構(gòu)成等比數(shù)列,求
的所有可能取值構(gòu)成的集合;
(Ⅲ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知無窮數(shù)列中,
、
、
、
構(gòu)成首項(xiàng)為2,公差為-2的等差數(shù)列,
、
、
、
,構(gòu)成首項(xiàng)為
,公比為
的等比數(shù)列,其中
,
.
(1)當(dāng),
,時(shí),求數(shù)列
的通項(xiàng)公式;
(2)若對任意的,都有
成立.
①當(dāng)時(shí),求
的值;
②記數(shù)列的前
項(xiàng)和為
.判斷是否存在
,使得
成立?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的公差大于零,且
是方程
的兩個(gè)根;各項(xiàng)均為正數(shù)的等比數(shù)列
的前
項(xiàng)和為
,且滿足
,
(1)求數(shù)列、
的通項(xiàng)公式;
(2)若數(shù)列滿足
,求數(shù)列
的前n項(xiàng)和
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com