已知雙曲線的兩個(gè)焦點(diǎn)為,實(shí)半軸長與虛半軸長的乘積為.直線點(diǎn)且與線段的夾角為,與線段垂直平分線的交點(diǎn)為,線段與雙曲線的交點(diǎn)為,且,求雙曲線方程.
從雙曲線的對(duì)稱性知,我們可以取以所在直線為軸,過中點(diǎn)且垂直于的直線為軸建立直角坐標(biāo)系如圖所示,
設(shè)雙曲線方程為,用待定系數(shù)法求之值,又設(shè),
從題設(shè)知道直線方程為
,在方程中令,得點(diǎn)坐標(biāo),
由定比分點(diǎn)坐標(biāo)公式可得點(diǎn)坐標(biāo)為
點(diǎn)在雙曲線上,.      ①
,        ②   從題設(shè)有,    ③
從式①,②消去,化簡整理得
解此方程得,或(舍去).
,.       ④
由③,④得
故所求雙曲線方程為,從對(duì)稱性知,雙曲線也適合.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓長軸長,焦距,過焦點(diǎn)作一直線,交橢圓于兩點(diǎn).設(shè),當(dāng)取何值時(shí),等于橢圓短軸的長?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,,為橢圓的左、右兩個(gè)焦點(diǎn),直線與橢圓交于兩點(diǎn),,已知橢圓中心點(diǎn)關(guān)于的對(duì)稱點(diǎn)恰好落在的左準(zhǔn)線上.
⑴求準(zhǔn)線的方程;
⑵已知,成等差數(shù)列,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,右準(zhǔn)線的方程為,傾斜角為的直線交橢圓兩點(diǎn),且的中點(diǎn)坐標(biāo)為,設(shè)為橢圓的右頂點(diǎn),為橢圓上兩點(diǎn),且,,三者的平方成等差數(shù)列,則直線斜率之積的絕對(duì)值是否為定值,若是,請(qǐng)求出定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,過橢圓的右焦點(diǎn)作一直線交橢圓兩點(diǎn),且到直線的距離之和為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

動(dòng)點(diǎn)到直線的距離與它到點(diǎn)的距離之比為,求動(dòng)點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知點(diǎn)的坐標(biāo)為,直線的方程為,動(dòng)點(diǎn)到點(diǎn)的距離比它到定直線的距離小,求動(dòng)點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知AB是橢圓的一條弦,M(2,1)是AB的中點(diǎn),以M為焦點(diǎn)且以橢圓E1的右準(zhǔn)線為相應(yīng)準(zhǔn)線的雙曲線E2與直線AB交于點(diǎn). (1)設(shè)雙曲線E2的離心率為,求關(guān)于的函數(shù)表達(dá)式; (2)當(dāng)橢圓E1與雙曲線E2的離心率互為倒數(shù)時(shí),求橢圓E1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

給出下列結(jié)論,其中正確的是(   ).
A.漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程一定是
B.拋物線的準(zhǔn)線方程是
C.等軸雙曲線的離心率是
D.橢圓的焦點(diǎn)坐標(biāo)是,

查看答案和解析>>

同步練習(xí)冊(cè)答案