如圖,已知定點(diǎn)F(1,0),動(dòng)點(diǎn)P在y軸上運(yùn)動(dòng),過(guò)點(diǎn)P作PM⊥PF并交x軸于M點(diǎn),延長(zhǎng)MP到N,使|PN|=|PM|.
(1)求動(dòng)點(diǎn)N的軌跡C的方程;
(2)直線l與動(dòng)點(diǎn)N的軌跡C交于A、B兩點(diǎn),若=-4,且≤|AB|≤,求直線l的斜率的取值范圍.

【答案】分析:(1)設(shè)出動(dòng)點(diǎn)N,則M,P的坐標(biāo)可表示出,利用PM⊥PF,kPMkPF=-1,求得x和y的關(guān)系式,即N的軌跡方程.
(2)設(shè)出直線l的方程,A,B的坐標(biāo),根據(jù)=-4,推斷出x1x2+y1y2=-4進(jìn)而求得y1y2的值,把直線與拋物線方程聯(lián)立消去x求得y1y2的表達(dá)式,進(jìn)而氣的b和k的關(guān)系式,利用弦長(zhǎng)公式表示出|AB|2,根據(jù)|AB|的范圍,求得k的范圍.
解答:解:(1)設(shè)動(dòng)點(diǎn)N(x,y),則M(-x,0),P(0,)(x>0)
∵PM⊥PF,∴kPMkPF=-1,即,∴y2=4x(x>0)即為所求.
(2)設(shè)直線l方程為y=kx+b,l與拋物線交于點(diǎn)A(x1,y1)、B(x2,y2),
則由=-4,得x1x2+y1y2=-4,即+y1y2=-4,∴y1y2=-8,
ky2-4y+4b=0(其中k≠0),∴y1y2==-8,b=-2k,
當(dāng)△=16-16kb=16(1+2k2)>0時(shí),
|AB|2=(1+)(y2-y12=[(y1+y22-4(y1y2)]=+32)
由題意,得16×6+32)≤16×30
解得,≤k2≤1,≤k≤1或-1≤k≤-
即所求k的取值范圍是[-1,-]∪[,1].
點(diǎn)評(píng):本題主要考查了直線與圓錐曲線的綜合問(wèn)題.考查運(yùn)用解析幾何的方法分析問(wèn)題和解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知定點(diǎn)F(1,0),動(dòng)點(diǎn)P在y軸上運(yùn)動(dòng),過(guò)點(diǎn)P作PM⊥PF并交x軸于M點(diǎn),延長(zhǎng)MP到N,使|PN|=|PM|.
(1)求動(dòng)點(diǎn)N的軌跡C的方程;
(2)直線l與動(dòng)點(diǎn)N的軌跡C交于A、B兩點(diǎn),若
OA
OB
=-4,且4
6
≤|AB|≤4
30
,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•濰坊二模)如圖,已知定點(diǎn)F(-1,0),N(1,0),以線段FN為對(duì)角線作周長(zhǎng)是4
2
的平行四邊形MNEF.平面上的動(dòng)點(diǎn)G滿足|
GO
|=2(O為坐標(biāo)原點(diǎn))
(I)求點(diǎn)E、M所在曲線C1的方程及動(dòng)點(diǎn)G的軌跡C2的方程;
(Ⅱ)已知過(guò)點(diǎn)F的直線l交曲線C1于點(diǎn)P、Q,交軌跡C2于點(diǎn)A、B,若|
AB
|∈(2
3
,
15
),求△NPQ內(nèi)切圓的半徑的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省濟(jì)南外國(guó)語(yǔ)學(xué)校高三(上)入學(xué)數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,已知定點(diǎn)F(1,0),動(dòng)點(diǎn)P在y軸上運(yùn)動(dòng),過(guò)點(diǎn)P作PM⊥PF并交x軸于M點(diǎn),延長(zhǎng)MP到N,使|PN|=|PM|.
(1)求動(dòng)點(diǎn)N的軌跡C的方程;
(2)直線l與動(dòng)點(diǎn)N的軌跡C交于A、B兩點(diǎn),若=-4,且≤|AB|≤,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2006-2007學(xué)年廣東省廣州市白云區(qū)高中數(shù)學(xué)青年教師解題大賽試卷(解析版) 題型:解答題

如圖,已知定點(diǎn)F(1,0),動(dòng)點(diǎn)P在y軸上運(yùn)動(dòng),過(guò)點(diǎn)P作PM⊥PF并交x軸于M點(diǎn),延長(zhǎng)MP到N,使|PN|=|PM|.
(1)求動(dòng)點(diǎn)N的軌跡C的方程;
(2)直線l與動(dòng)點(diǎn)N的軌跡C交于A、B兩點(diǎn),若=-4,且≤|AB|≤,求直線l的斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案