已知函數(shù)f(x)=
3
sin2x+2cos2
x.
(1)求f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[0,
π
2
]上的最大、最小值.
分析:f(x)解析式第二項(xiàng)利用二倍角的余弦函數(shù)公式化簡,整理后再利用兩角和與差的正弦函數(shù)公式化為一個(gè)角的正弦函數(shù),
(1)找出ω的值,代入周期公式即可求出最小正周期;
(2)由x的范圍求出這個(gè)角的范圍,利用正弦函數(shù)的值域即可確定出最小值與最大值.
解答:解:f(x)=
3
sin2x+cos2x+1=2(
3
2
sin2x+
1
2
cos2x)+1=2sin(2x+
π
6
)+1,
(1)∵ω=2,∴T=π;
(2)∵x∈[0,
π
2
],∴2x+
π
6
∈[
π
6
,
6
],
當(dāng)2x+
π
6
=
π
2
,即x=
π
6
時(shí),f(x)取得最大值為2+1=3;
當(dāng)2x+
π
6
=
6
,即x=
π
2
時(shí),f(x)取得最小值為-1+1=0.
點(diǎn)評(píng):此題考查了兩角和與差的正弦函數(shù)公式,三角函數(shù)的周期性及其求法,以及正弦函數(shù)的定義域與值域,熟練掌握公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3•2x-1,則當(dāng)x∈N時(shí),數(shù)列{f(n+1)-f(n)}( 。
A、是等比數(shù)列B、是等差數(shù)列C、從第2項(xiàng)起是等比數(shù)列D、是常數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3-x
+
1
x+2
的定義域?yàn)榧螦,B={x丨m<x-m<9}.
(1)若m=0,求A∩B,A∪B;
(2)若A∩B=B,求所有滿足條件的m的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3-x
+
1
x+2
的定義域?yàn)榧螦,B={x|x<a}.
(1)若A⊆B,求實(shí)數(shù)a的取值范圍;
(2)若全集U={x|x≤4},a=-1,求?UA及A∩(?UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3-ax
a-1
(a≠1)在區(qū)間(0,4]上是增函數(shù),則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3-2log2x,g(x)=log2x.
(1)當(dāng)x∈[1,4]時(shí),求函數(shù)h(x)=[f(x)+1]•g(x)的值域;
(2)如果對(duì)任意的x∈[1,4],不等式f(x2)•f(
x
)>k•g(x)
恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案