已知函數(shù)f(x)=|lgx|,若0<a<b,且f(a)=f(b),則a+2b的取值范圍是(  )
A、(2
2
,+∞)
B、[2
2
,+∞)
C、(3,+∞)
D、[3,+∞)
分析:由題意f(a)=f(b),求出ab的關(guān)系,然后利用“對勾”函數(shù)的性質(zhì)知函數(shù)f(a)在a∈(0,1)上為減函數(shù),
確定a+2b的取值范圍.
解答:解:因為f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或b=
1
a
,所以a+2b=a+
2
a

又0<a<b,所以0<a<1<b,令f(a)=a+
2
a
,由“對勾”函數(shù)的性質(zhì)知函數(shù)f(a)在a∈(0,1)上為減函數(shù),
所以f(a)>f(1)=1+
2
1
=3,即a+2b的取值范圍是(3,+∞).
故選C.
點評:本小題主要考查對數(shù)函數(shù)的性質(zhì)、函數(shù)的單調(diào)性、函數(shù)的值域,考生在做本小題時極易忽視a的取值范圍,而利用均值不等式求得a+2b=a+
2
a
>2
2
,從而錯選A,這也是命題者的用心良苦之處.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案