過點P(1,2)的直線交圓(x-2)2+y2=9于兩點A、B,若點P是弦AB的中點,則弦AB所在直線的方程是    
【答案】分析:利用圓心和弦的中點的連線與弦垂直,可求出弦AB的斜率,用點斜式寫出弦AB所在直線的方程,并化為一般式.
解答:解:點P(1,2)在圓C(x-2)2+y2=9的內(nèi)部,
∵點P是弦AB的中點,
∴CP⊥AB,
∴弦AB的斜率 k===,
∴弦AB所在直線的方程是 y-2=(x-1),
即:x-2y+3=0,
故答案為:x-2y+3=0.
點評:本題考查直線和圓相交的性質(zhì),求直線方程,利用圓心和弦的中點的連線與弦垂直來確定弦的斜率.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖梯形ABCD,AD∥BC,∠A=90°,過點C作CE∥AB,AD=2BC,AB=BC,,現(xiàn)將梯形沿CE折成直二面角D-EC-AB.
(1)求直線BD與平面ABCE所成角的正切值;
(2)設線段AB的中點為P,在直線DE上是否存在一點M,使得PM∥面BCD?若存在,請指出點M的位置,并證明你的結(jié)論;若不存在,請說明理由;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•淮南二模)已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)與雙曲4x2-
4
3
y2=1有相同的焦點,且橢C的離心e=
1
2
,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)離心率為
3
2
,且過P(
6
,
2
2
).
(1)求橢圓E的方程;
(2)已知直線l過點M(-
1
2
,0),且與開口朝上,頂點在原點的拋物線C切于第二象限的一點N,直  線l與橢圓E交于A,B兩點,與y軸交與D點,若
AB
=λ
AN
,
BD
BN
,且λ+μ=
5
2
,求拋物線C的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆重慶市“名校聯(lián)盟”高二第一次聯(lián)考文科數(shù)學試卷(解析版) 題型:解答題

已知兩條直線的交點為P,直

的方程為:.

(1)求過點P且與平行的直線方程;

(2)求過點P且與垂直的直線方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年安徽省皖南八校高三第一次聯(lián)考理科數(shù)學試卷 題型:解答題

(本小題滿分12分)已知橢圓過點A(a,0),B(0,b)的直

 

線傾斜角為,原點到該直線的距離為.

 

(1)求橢圓的方程;

(2)斜率小于零的直線過點D(1,0)與橢圓交于M,N兩點,若求直線MN的方程;

(3)是否存在實數(shù)k,使直線交橢圓于P、Q兩點,以PQ為直徑的圓過點D(1,0)?若存在,求出k的值;若不存在,請說明理由。

 

查看答案和解析>>

同步練習冊答案