已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,2bcosc=2a-c
(I)求 B;
(II)若△ABC的面積為,求b的取值范圍.
【答案】分析:(1)根據(jù)正弦定理結(jié)合sinA=sin(B+C),化簡整理得2cosBsinC=sinC,結(jié)合sinC>0解出cosB=,從而可得B=
(2)由正弦定理的面積公式,得=,從而解出ac=4,再結(jié)合基本不等式求最值和三角形兩邊之和大于第三邊,即可得到b的取值范圍.
解答:解:(1)由正弦定理,得2sinBcosC=2sinA-sinC,----(2分)
在△ABC中,sinA=sin(B+C)=sinBcosC+cosBsinC,
∴2cosBsinC=sinC,
又∵C是三角形的內(nèi)角,可得sinC>0,∴2cosB=1,可得cosB=,
∵B是三角形的內(nèi)角,B∈(0,π),∴B=.-----(6分)
(2)∵S△ABC==,B=
,解之得ac=4,----(8分)
由余弦定理,得b2=a2+c2-2accosB=a2+c2-ac≥2ac-ac=ac=4,(當(dāng)且僅當(dāng)a=c=2時,“=”成立)
∴當(dāng)且僅當(dāng)a=c=2時,b的最小值為2.----(12分)
綜上所述,邊b的取值范圍為[2,+∞)----(13分)
點(diǎn)評:本題給出三角形的邊角關(guān)系,求角B的大小,并在已知面積的情況下求邊b的取值范圍.著重考查了利用正余弦定理解三角形、三角形的面積公式和三角恒等變換等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別為△ABC的三個內(nèi)角A,B,C的對邊,且(b+a+c)(b-a-c)+2
3
absinC=0

(1)求B
(2)若b=2,△ABC的面積為
3
,求a,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,acosC+
3
asinC-b-c=0

(1)求A;
(2)若a=2,△ABC的面積為
3
,證明△ABC是正三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鄭州一模)已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,2bcosc=2a-c
(I)求 B;
(II)若△ABC的面積為
3
,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•靜安區(qū)一模)已知a,b,c分別為△ABC三個內(nèi)角A、B、C所對的邊長,a,b,c成等比數(shù)列.
(1)求B的取值范圍;
(2)若x=B,關(guān)于x的不等式cos2x-4sin(
π
4
+
x
2
)sin(
π
4
-
x
2
)+m>0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,acosC+
3
asinC-b-c=0

(1)求A;
(2)若△ABC的面積S=5
3
,b=5,求sinBsinC的值.

查看答案和解析>>

同步練習(xí)冊答案