某產(chǎn)品的三個質(zhì)量指標(biāo)分別為x,y,z,用綜合指標(biāo)S=x+y+z評價(jià)該產(chǎn)品的等級.若S≤4,則該產(chǎn)品為一等品.先從一批該產(chǎn)品中,隨機(jī)抽取10件產(chǎn)品作為樣本,其質(zhì)量指標(biāo)列表如下:
產(chǎn)品編號
A1
A2
A3
A4
A5
質(zhì)量指標(biāo)(x,y,z)
(1,1,2)
(2,1,1)
(2,2,2)
(1,1,1)
(1,2,1)
產(chǎn)品編號
A6
A7
A8
A9
A10
質(zhì)量指標(biāo)(x,y,z)
(1,2,2)
(2,1,1)
(2,2,1)
(1,1,1)
(2,1,2)
(1)利用上表提供的樣本數(shù)據(jù)估計(jì)該批產(chǎn)品的一等品率;
(2)在該樣品的一等品中,隨機(jī)抽取兩件產(chǎn)品,
(1)用產(chǎn)品編號列出所有可能的結(jié)果;
(2)設(shè)事件B為“在取出的2件產(chǎn)品中,每件產(chǎn)品的綜合指標(biāo)S都等于4”,求事件B發(fā)生的概率
(1)該批產(chǎn)品的一等品率為.(2)(1)所有可能結(jié)果為,,.(2).

試題分析:(1)首先將3項(xiàng)指標(biāo)相加,求出綜合指標(biāo)S.然后找出其中的產(chǎn)品,便可估計(jì)出該批產(chǎn)品的一等品率.(2)(1)根據(jù)(1)題結(jié)果可知,、、、、、為一等品,共6件.從這6件一等品中隨機(jī)抽取2件產(chǎn)品的所有可能結(jié)果為:,,,共15種.(2)在該樣本的一等品中,綜合指標(biāo)S等于4的產(chǎn)品編號分別為、、,則事件B發(fā)生的所有可能結(jié)果為共6種.由古典概型概率公式可得事件B發(fā)生的概率.
試題解析:(1)10件產(chǎn)品的綜合指標(biāo)S如下表所示:
產(chǎn)品編號










S
4
4
6
3
4
5
4
5
3
5
其中的有、、、、、,共6件,故該樣本的一等品率為,從而可估計(jì)該批產(chǎn)品的一等品率為.
(2)(1)在該樣本的一等品中,隨機(jī)抽取2件產(chǎn)品的所有可能結(jié)果為,,共15種.(2)在該樣本的一等品中,綜合指標(biāo)S等于4的產(chǎn)品編號分別為、、、,則事件B發(fā)生的所有可能結(jié)果為共6種.所以.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

有甲、乙兩個工廠生產(chǎn)同一種產(chǎn)品,產(chǎn)品分為一等品和二等品.為了考察這兩個工廠的產(chǎn)品質(zhì)量的水平是否一致,從甲、乙兩個工廠中分別隨機(jī)地抽出產(chǎn)品109件,191件,其中甲工廠一等品58件,二等品51件,乙工廠一等品70件,二等品121件.
(1)根據(jù)以上數(shù)據(jù),建立2×2列聯(lián)表;
(2)試分析甲、乙兩個工廠的產(chǎn)品質(zhì)量有無顯著差別(可靠性不低于99%).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在某大學(xué)聯(lián)盟的自主招生考試中,報(bào)考文史專業(yè)的考生參加了人文基礎(chǔ)學(xué)科考試科目“語文”和“數(shù)學(xué)”的考試.某考場考生的兩科考試成績數(shù)據(jù)統(tǒng)計(jì)如下圖所示,本次考試中成績在內(nèi)的記為,其中“語文”科目成績在內(nèi)的考生有10人.

(1)求該考場考生數(shù)學(xué)科目成績?yōu)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824043221242338.png" style="vertical-align:middle;" />的人數(shù);
(2)已知參加本考場測試的考生中,恰有2人的兩科成績均為.在至少一科成績?yōu)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824043221242338.png" style="vertical-align:middle;" />的考生中,隨機(jī)抽取2人進(jìn)行訪談,求這2人的兩科成績均為的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測試,現(xiàn)學(xué)校決定利用隨機(jī)數(shù)表法從中抽取100人進(jìn)行成績抽樣調(diào)查,先將800人按001,002, ,800進(jìn)行編號;
(1)如果從第8行第7列的數(shù)開始向右讀,請你依次寫出最先檢查的3個人的編號;
(下面摘取了第7行到第9行)

(2)抽取的100的數(shù)學(xué)與地理的水平測試成績?nèi)缦卤恚?br />成績分為優(yōu)秀、良好、及格三個等級;橫向,縱向分別表示地理成績與數(shù)學(xué)成績,例如:表中數(shù)學(xué)成績?yōu)榱己玫墓灿?0+18+4=42,若在該樣本中,數(shù)學(xué)成績優(yōu)秀率是30%,求a,b的值:
人數(shù)
數(shù)學(xué)
優(yōu)秀
良好
及格
地理
優(yōu)秀
7
20
5
良好
9
18
6
及格
a
4
b
(3)在地理成績及格的學(xué)生中,已知求數(shù)學(xué)成績?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在某次高三考試成績中,隨機(jī)抽取了9位同學(xué)的數(shù)學(xué)成績進(jìn)行統(tǒng)計(jì)。下表是9位同學(xué)的選擇題和填空題的得分情況(選擇題滿分60分,填空題滿分16分):
選擇題
40
55
50
45
50
40
45
60
40
填空題
12
16

12
16
12
8
12
8
(Ⅰ)若這9位同學(xué)填空題得分的平均分為12分,試求表中的的值及他們填空題得分的標(biāo)準(zhǔn)差;
(Ⅱ)在(1)的條件下,記這9位同學(xué)的選擇題得分組成的集合為A,填空題得分組成的集合為B。若同學(xué)甲的解答題的得分是46分,現(xiàn)分別從集合A、B中各任取一個值當(dāng)作其選擇題和填空題的得分,求甲的數(shù)學(xué)成績高于100分的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某單位N名員工參加“社區(qū)低碳你我他”活動,他們的年齡在25歲至50歲之間。按年齡分組:第1組,第2組,第3組,第4組,第5組,由統(tǒng)計(jì)的數(shù)據(jù)得到的頻率分布直方圖如圖所示,在其右面的表是年齡的頻率分布表。

(1)求正整數(shù)a,b,N的值;
(2)現(xiàn)要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組中抽取的人數(shù)分別是多少?
(3)在(2)的條件下,從這6人中隨機(jī)抽取2人參加社區(qū)宣傳交流活動,求恰有1 人在第3組的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

為研究學(xué)生物理成績與數(shù)學(xué)成績是否相關(guān),某中學(xué)老師將一次考試中五名學(xué)生的數(shù)學(xué)、物理成績記錄如下表所示:

根據(jù)上表提供的數(shù)據(jù),經(jīng)檢驗(yàn)物理成績與數(shù)學(xué)成績呈線性相關(guān),且得到y(tǒng)關(guān)于x的線性回歸方程,那么表中t的值為       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個車間為了規(guī)定工時(shí)定額.需要確定加工零件所花費(fèi)的時(shí)間,為此進(jìn)行了10次試驗(yàn).測得的數(shù)據(jù)如下:
零件數(shù)x/個
10
20
30
40
50
60
70
80
90
100
加工時(shí)間y/分
62
68
75
81
89
95
102
108
115
122
(1)y與x是否具有線性相關(guān)關(guān)系?
(2)如果y與x具有線性相關(guān)關(guān)系,求回歸直線方程;
(3)根據(jù)求出的回歸直線方程,預(yù)測加工200個零件所用的時(shí)間為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某觀賞魚池塘中養(yǎng)殖大量的紅鯽魚與金魚,為了估計(jì)池中兩種魚數(shù)量情況,養(yǎng)殖人員從池中捕出紅鯽魚和金魚各1000條,并給每條魚作上不影響其存活的記號,然后放回池內(nèi),經(jīng)過一段時(shí)間后,再從池中隨機(jī)捕出1000條魚,分別記錄下其中有記號的魚數(shù)目,再放回池中,這樣的記錄作了10次,將記錄數(shù)據(jù)制成如圖所示的莖葉圖.

(1)根據(jù)莖葉圖分別計(jì)算有記號的兩種魚的平均數(shù),并估計(jì)池塘中兩種魚的數(shù)量.
(2)隨機(jī)從池塘中逐條有放回地捕出3條魚,求恰好是1條金魚2條紅鯽魚的概率.

查看答案和解析>>

同步練習(xí)冊答案