若a=(cosa ,sina ),b=(cosb ,sinb ),
且.
(1)用k表示數(shù)量積a·b.
(2)求a·b的最小值,并求出此時(shí)a與b的夾角q .
解: (1)由得, ∴, ∴. ∵|a|=1,|b|=1, ∴ ∴ .(2), 由函數(shù)單調(diào)性的定義容易證明 在(0,1]上單調(diào)遞減,在[1,+∞)上單調(diào)遞增. ∴當(dāng)k=1時(shí),,此時(shí)a與b的夾角q 滿足, .∴θ=60° 由已知a=(cosa ,sina ),b=(cosb ,sinb ),易知|a|=1,|b|=1,又告訴了有關(guān)模的一個(gè)等式,我們知道,在研究向量的模的時(shí)候是常常將之平方,平方之后將會(huì)出現(xiàn)a·b,而第(1)問恰恰就是求a·b,則問題迎刃而解. |
本題是一道非常典型的綜合題,考查了向量數(shù)量積的定義、模長公式、夾角公式,研究向量模的常用方法 (將之平方),運(yùn)用函數(shù)單調(diào)性求函數(shù)最值. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
m |
n |
m |
n |
4 |
5 |
BC |
BA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
sin(2π-α)cos(π+α)cos(
| ||||
2sin(3π+α)sin(-π-α)sin(
|
25 |
4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分18分)本題共有3個(gè)小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.
已知橢圓的方程為,點(diǎn)P的坐標(biāo)為(-a,b).
(1)若直角坐標(biāo)平面上的點(diǎn)M、A(0,-b),B(a,0)滿足,求點(diǎn)的坐標(biāo);
(2)設(shè)直線交橢圓于、兩點(diǎn),交直線于點(diǎn).若,證明:為的中點(diǎn);
(3)對于橢圓上的點(diǎn)Q(a cosθ,b sinθ)(0<θ<π),如果橢圓上存在不同的兩個(gè)交點(diǎn)、滿足,寫出求作點(diǎn)、的步驟,并求出使、存在的θ的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com