【題目】已知點(diǎn),點(diǎn)A是直線上的動(dòng)點(diǎn),過作直線,,線段的垂直平分線與交于點(diǎn).
(1)求點(diǎn)的軌跡的方程;
(2)若點(diǎn),是直線上兩個(gè)不同的點(diǎn),且的內(nèi)切圓方程為,直線的斜率為,求的取值范圍.
【答案】(1);(2)
【解析】
(1)根據(jù)題意得到:點(diǎn)到點(diǎn)的距離等于它到直線的距離,所以點(diǎn)的軌跡是以點(diǎn)F為焦點(diǎn),直線為準(zhǔn)線的拋物線,再利用拋物線的定義即可得到曲線的方程.
(2)首先設(shè),點(diǎn),點(diǎn),求出直線的方程,根據(jù)圓心到直線的距離為,得到,同理得到,即是關(guān)于的方程的兩根,再根據(jù)韋達(dá)定理得到,再求的范圍即可.
(1)因?yàn)辄c(diǎn),點(diǎn)是直線上的動(dòng)點(diǎn),
過作直線,,線段的垂直平分線與交于點(diǎn),
所以點(diǎn)到點(diǎn)的距離等于它到直線的距離,
所以點(diǎn)的軌跡是以點(diǎn)F為焦點(diǎn),直線為準(zhǔn)線的拋物線,
所以曲線的方程為.
(2)設(shè),點(diǎn),點(diǎn),
直線的方程為:,
化簡(jiǎn)得,
因?yàn)?/span>的內(nèi)切圓的方程為,
所以圓心到直線的距離為,即,
整理得:,
由題意得,所以上式化簡(jiǎn)得,
同理,有.
所以是關(guān)于的方程的兩根,
,.
所以,
因?yàn)?/span>,,
所以,
直線的斜率,則,
所以,
因?yàn)楹瘮?shù)在單調(diào)遞增,
所以,,
所以0.
即的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的參數(shù)方程為(為參數(shù)),P是曲線C上的點(diǎn)且對(duì)應(yīng)的參數(shù)為,.直線l過點(diǎn)P且傾斜角為.
(1)求曲線C的普通方程和直線l的參數(shù)方程.
(2)已知直線l與x軸,y軸分別交于,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,垂直圓O所在的平面,是圓O的一條直徑,C為圓周上異于A,B的動(dòng)點(diǎn),D為弦的中點(diǎn),.
(1)證明:平面平面;
(2)若,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和Sn滿足2Sn=an+2﹣2,n∈N*.
(1)若數(shù)列{an}為等比數(shù)列,求數(shù)列{an}的公比q的值.
(2)若a2=a1=1,bn=an+an+1,求數(shù)列{bn}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校某班的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如圖(已知本次測(cè)試成績(jī)滿分100分,且均為不低于50分的整數(shù)),請(qǐng)根據(jù)圖表中的信息解答下列問題.
(1)求全班的學(xué)生人數(shù)及頻率分布直方圖中分?jǐn)?shù)在[70,80)之間的矩形的高;
(2)為了幫助學(xué)生提高數(shù)學(xué)成績(jī),決定在班里成立“二幫一”小組,即從成績(jī)[90,100]中選兩位同學(xué),共同幫助[50,60)中的某一位同學(xué),已知甲同學(xué)的成績(jī)?yōu)?/span>53分,乙同學(xué)的成績(jī)?yōu)?/span>96分,求甲、乙恰好被安排在同一小組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在《九章算術(shù)》中,將四個(gè)面都為直角三角形的四面體稱之為鱉臑.如圖,在鱉臑中,平面,,且,過點(diǎn)分別作于點(diǎn),于點(diǎn),連結(jié),當(dāng)的面積最大值時(shí),( ).
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,.
(1)函數(shù)的圖象能否與x軸相切?若能,求出實(shí)數(shù)a;若不能,請(qǐng)說明理由.
(2)若在處取得極大值,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】半正多面體亦稱“阿基米德多面體”,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學(xué)的對(duì)稱美.如圖,將正方體沿交于一頂點(diǎn)的三條棱的中點(diǎn)截去一個(gè)三棱錐,如此共可截去八個(gè)三棱錐,得到一個(gè)有十四個(gè)面的半正多面體,它們的棱長(zhǎng)都相等,其中八個(gè)為正三角形,六個(gè)為正方形,稱這樣的半正多面體為二十四等邊體.若棱長(zhǎng)為的二十四等邊體的各個(gè)頂點(diǎn)都在同一個(gè)球面上,則該球的表面積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小軍的微信朋友圈參與了“微信運(yùn)動(dòng)”,他隨機(jī)選取了40位微信好友(女20人,男20人),統(tǒng)計(jì)其在某一天的走路步數(shù).其中,女性好友的走路步數(shù)數(shù)據(jù)記錄如下:
5860 8520 7326 6798 7325 8430 3216 7453 11754 9860
8753 6450 7290 4850 10223 9763 7988 9176 6421 5980
男性好友走路的步數(shù)情況可分為五個(gè)類別(說明:a~b表示大于等于a,小于等于b)
A(0~2000步)1人, B(2001-5000步)2人, C(5001~8000步)3人,
D(8001-10000步)6人, E(10001步及以上)8人
若某人一天的走路步數(shù)超過8000步被系統(tǒng)認(rèn)定為“健康型”否則被系統(tǒng)認(rèn)定為“進(jìn)步型”.
(I)訪根據(jù)選取的樣本數(shù)據(jù)完成下面的2×2列聯(lián)表,并根據(jù)此判斷能否有95%以上的把握認(rèn)為“認(rèn)定類型”與“性別”有關(guān)?
健康型 | 進(jìn)步型 | 總計(jì) | |
男 | 20 | ||
女 | 20 | ||
總計(jì) | 40 |
(Ⅱ)如果從小軍的40位好友中該天走路步數(shù)超過10000的人中隨機(jī)抽取3人,設(shè)抽到女性好友X人,求X的分布列和數(shù)學(xué)期望.
附:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com